6,229 research outputs found
Analysis of structure withdissipator spectra under design and control
Las estructuras de Quito, Ecuador, son diseñadas para el espectro de la norma ecuatoriana de 2015, o para el hallado en la microzonificación de la ciudad de 2012. Estos espectros consideran en forma macro las fallas ciegas inversas sobre las que se halla la ciudad. En este artÃculo se destaca la importancia de verificar el diseño para los espectros de control que fueron desarrollados mediante métodos determinÃsticos para Quito en el 2015, los mismos que consideran la generación de sismos en las fallas ciegas.
En el artÃculo se presentan dos modelos de plasticidad extendida para los elementos estructurales y un modelo de plasticidad para los disipadores ADAS o TADAS. Luego se indica con cierto detalle la técnica del pushover multimodal y el método del espectro de capacidad con el cual se halla el punto de capacidad de una estructura que fue inicialmente calculada para los espectros de diseño. Dicha estructura ha sido reforzada con disipadores ADAS para que no colapse ante el espectro de control que tiene ordenadas más altas que el espectro de diseño.The structures of Quito, Ecuador, are designed for the spectrum of the Ecuadorian code of 2015, or using the study of microzoning of the city of 2012. These spectra consider in general the effect of the blind reverse faults belonging to the city area. In this article, it is pointed out the importance of checking the design for the deterministic control spectra developed for Quito in 2015 based on earthquakes simulated in the blinds faults.
In this paper we considered two models of extended plasticity for the structural elements and one model of plasticity for the ADAS and TADAS devices. Then, the technique of multimodal pushover is described, as well as the method of the capacity spectrum used to calculate the performance point of the structure. This structure was initially calculated by using design spectra and it had to be reinforced with ADAS devices in order to avoid its collapse for the control spectrum which has higher ordinates than the design one.Peer Reviewe
Modelling patterns in continuous streams of data
The untapped source of information, extracted from the increasing number of sensors, can be explored to improve and optimize several systems. Yet, hand in hand with this growth goes the increasing difficulty to manage and organize all this new information. The lack of a standard context representation scheme is one of the main struggles in this research area, conventional methods for extracting knowledge from data rely on a standard representation or a priori relation. Which may not be feasible for IoT and M2M scenarios, with this in mind we propose a stream characterization model which aims to provide the foundations for a novel stream similarity metric. Complementing previous work on context organization, we aim to provide an automatic stream organizational model without enforcing specific representations. In this paper we extend our work on stream characterization and devise a novel similarity metho
Distinct magnetic signatures of fractional vortex configurations in multiband superconductors
Vortices carrying fractions of a flux quantum are predicted to exist in
multiband superconductors, where vortex core can split between multiple
band-specific components of the superconducting condensate. Using the
two-component Ginzburg-Landau model, we examine such vortex configurations in a
two-band superconducting slab in parallel magnetic field. The fractional
vortices appear due to the band-selective vortex penetration caused by
different thresholds for vortex entry within each band-condensate, and
stabilize near the edges of the sample. We show that the resulting fractional
vortex configurations leave distinct fingerprints in the static measurements of
the magnetization, as well as in ac dynamic measurements of the magnetic
susceptibility, both of which can be readily used for the detection of these
fascinating vortex states in several existing multiband superconductors.Comment: 5 pages, 4 figure
Synchronization and Stability in Noisy Population Dynamics
We study the stability and synchronization of predator-prey populations
subjected to noise. The system is described by patches of local populations
coupled by migration and predation over a neighborhood. When a single patch is
considered, random perturbations tend to destabilize the populations, leading
to extinction. If the number of patches is small, stabilization in the presence
of noise is maintained at the expense of synchronization. As the number of
patches increases, both the stability and the synchrony among patches increase.
However, a residual asynchrony, large compared with the noise amplitude, seems
to persist even in the limit of infinite number of patches. Therefore, the
mechanism of stabilization by asynchrony recently proposed by R. Abta et. al.,
combining noise, diffusion and nonlinearities, seems to be more general than
first proposed.Comment: 3 pages, 3 figures. To appear in Phys. Rev.
Response of the Brazilian gravitational wave detector to signals from a black hole ringdown
It is assumed that a black hole can be disturbed in such a way that a
ringdown gravitational wave would be generated. This ringdown waveform is well
understood and is modelled as an exponentially damped sinusoid. In this work we
use this kind of waveform to study the performance of the SCHENBERG
gravitational wave detector. This first realistic simulation will help us to
develop strategies for the signal analysis of this Brazilian detector. We
calculated the signal-to-noise ratio as a function of frequency for the
simulated signals and obtained results that show that SCHENBERG is expected to
be sensitive enough to detect this kind of signal up to a distance of .Comment: 5 pages, 4 figures, Amaldi 5 Conference Proceedings contribution.
Submitted to Class. Quantum Gra
- …