
c© 20XX by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of XXX (OJXX)
Volume X, Issue X, 20XX

http://www.ronpub.com/ojxx
ISSN XXXX-XXXX

Modelling patterns in continuous streams of
data

Ricardo JesusA, B, Mário AntunesA, B, Diogo GomesA, B, Rui L. AguiarA, B

A DETI, Universidade de Aveiro, Aveiro, Portugal, ricardojesus@ua.pt
B Instituto de Telecomunicações, Universidade de Aveiro, Aveiro, Portugal, {mario.antunes, dgomes,

ruilaa}@av.it.pt

ABSTRACT

The untapped source of information, extracted from the increasing number of sensors, can be explored to improve
and optimize several systems. Yet, hand in hand with this growth goes the increasing difficulty to manage and
organize all this new information. The lack of a standard context representation scheme is one of the main struggles
in this research area, conventional methods for extracting knowledge from data rely on a standard representation
or a priori relation. Which may not be feasible for IoT and M2M scenarios, with this in mind we propose a stream
characterization model which aims to provide the foundations for a novel stream similarity metric. Complementing
previous work on context organization, we aim to provide an automatic stream organizational model without
enforcing specific representations. In this paper we extend our work on stream characterization and devise a novel
similarity method.

TYPE OF PAPER AND KEYWORDS

Regular research paper: Stream mining, Time series, Machine learning, IoT, M2M, Context awareness

1 INTRODUCTION

Over the last years the Internet of Things (IoT) [34]
has gained significant attention from both industry and
academia. IoT has made it possible for everyday devices
to acquire and store contextual data, and to use it at a
later stage. This allows devices to share data with one
another, in order to cooperate and accomplish a given
objective. A cornerstone to this connectivity landscape
is machine-to-machine (M2M) communications [10].
M2M generally refers to information and communica-
tion technologies able to measure, deliver, digest and
react upon information autonomously, i.e. with none or
minimal human interaction.

Context-awareness is an intrinsic property of IoT [27].
Context-aware communications and computing have
played a critical role in understanding sensor data, since

it provides the necessary tools to analyse data regarding
an entity and choose a useful action. As discussed
in [5] an entity’s context can be used to provide added
value: improve efficiency, optimize resources and detect
anomalies, to name a few. However, recent projects
follow a vertical approach [14, 28, 12], where devices/
manufacturers can not share context information because
each one uses its own structure, leading to information
silos. This has hindered interoperability and the realisa-
tion of even more powerful IoT and M2M scenarios.

Context information is an enabler for further data anal-
ysis, potentially exploring the integration of an increas-
ing number of untapped information sources. Not only
are the common definitions of context information [1,
33] so broad that any data related to an entity can be con-
sidered context information, but they also do not provide
any insight about the structure of context information.

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojxx


Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

Currently there is no uniform way to share/understand
vast amounts of IoT/M2M data, and it is unlikely that
in the future a context representation standard will be
widely adopted. First, there is the diversity of context
representations, each of them designed for a specific
usage and/or data types. Second, a widely adopted
context representation does not completely solve the
issue of knowledge extraction. Due to the vast amount
of data being considered, it becomes extremely difficult
to define a priori all the relations among information
sources, patterns, and even possible optimizations.

Another important issue is the need for a new way to
manage, store and process such diverse machine data:
unconstrained, without limiting structures and with min-
imal human interaction. With this in mind we proposed
a data organization model optimized for unstructured
data [5, 4] that organizes context data based on semantic
and stream similarity. Our model uses tailored features
and unsupervised learning algorithms to automatically
organize data.

In this paper we extend our previous work on stream
characterization model [18, 6] and devise a novel simi-
larity metric for our stream model. Our generative model
for stream characterization, can be used either for stream
generation or similarity.

The remainder of this paper is organized as follows.
In Section 2 we discuss semantic similarity and present
the most relevant methods. We discuss our generative
model for stream characterization in Section 3. Details
about the implementation of our prototype are given in
Section 4. The results of our evaluation are in Section 5.
Finally, the discussion and conclusions are presented in
Section 6.

2 RELATED WORK

Context information is an enabler for further data analy-
sis, potentially exploring the integration of an increasing
number of information sources. As previously men-
tioned, common definitions of context information [1,
33, 13] do not provide any insight about its structure.
In fact, each device can share context information with a
different structure. For example, sensory and location in-
formation can be used to characterize an entity’s context,
yet the two can have different structures. One important
objective of context representation is to standardize the
process of sharing and understanding context informa-
tion. However, nowadays no widely accepted context
representation scheme exists; instead there are several
approaches to deal with context information. These can
be divided into three groups: (i) adopt/create a new
context representation, (ii) normalize the storing process
through ontologies, (iii) accept the diversity of context

representations.
In [25] the authors analyse two different projects

related with context-awareness. One of the projects uses
a single context representation scheme. The authors con-
cluded that using a single context representation limits
the relations that exist between all the data sources. As
a consequence it becomes increasingly difficult to detect
and react to complex events. Furthermore, it limits the
quantity of data that can be shared with other projects.

The second possibility would be employing ontologies
to normalize the organization process. Each context
representation is mapped into the internal data model
through an ontology [22]. This type of platform supports
several context representations, yet it is necessary to
define a new ontology (mapping) for each new represen-
tation. Defining a new ontology is a tedious task that
requires human intervention. Due to the diversity and
scale associated with IoT/M2M scenarios it is extremely
difficult to maintain this strategy. As an example, we can
consider the lexical database WordNet [24]. WordNet
is a manually-created hierarchical network of nodes
(taxonomy), that due to funding and staffing issues is
no longer accepting comments and suggestions. It is
extremely difficult to maintaining large databases of
relations (of any type) if they depend on human input.

As an alternative, we can accept the diversity of
context representation as a consequence of economic
pressures, and develop an efficient method to deal with it.
Let us consider the specific case of IoT/M2M scenarios
as a representative use case for context information and
context-aware systems. In order to develop and deploy
complex IoT/M2M scenarios we need to address the
issues regarding storing, analysing and understanding
IoT data. However, correctly managing IoT data has
become a difficult task to accomplish. The volume and
diversity of data puts a toll on conventional storage and
analytical tools, restricting and limiting the development
of complex IoT/M2M scenarios. Due to the volume
and lack of formal representation, IoT data can be
characterized as a combination of the unstructured data
and Big Data paradigms. These paradigms are inherently
connected, and are one of the factors that led to the
advent of NoSQL databases [21, 9]. This insight points
to the limitation of current technology when dealing with
massive unstructured data.

Relational databases rely on predefined representa-
tions and a priori relations in order to correctly store and
retrieve information. That is rather difficult to accom-
plish when the data is mostly unstructured, as is the case
of IoT data. NoSQL databases relax some constraints
and are good alternatives to several workloads and even
small IoT scenarios. However, they lack advanced query
capabilities, restricting the discovery of information and
complex patterns [3, 5].

2



Ricardo Jesus, Mário Antunes, Diogo Gomes, Rui L. Aguiar: Extracting knowledge from stream behavioural patterns

The limitations are not purely technological. Even if
we were able to store and query all the data gathered by
IoT devices, we would still need methods to organize,
analyse and discover relevant relations between data
sources and target functions. Most analytical tools rely
on either a priori relations or a human to analyse the
data. These elements bestow some latent knowledge to
the underlying model, which implies top-down classi-
fication. Top-down classification limits the dimension
along which one can make distinctions, and local choices
at the leaves are constrained by global categorizations in
the branches. It is therefore inherently difficult to put
things in their hierarchical places, and the categories are
often forced. Let us consider the following example.
The information gathered from an accelerometer inside
a vehicle can be used by city officials to detect potholes
and other anomalies on the road. But it can also be
used by policemen to detect dangerous manoeuvres and
behaviours. These examples illustrate how difficult
defining a priori relations in complex environments can
become.

Some authors [29, 7, 15] point out that probabilistic
models based on bottom-up characterization can produce
better results than binary schemes based on top-down
classification. Based on this approach we devised a
bottom-up model [5] to organize context information
without enforcing a specific representation. Our organi-
zation model is divided into two main parts, as depicted
in Figure 1.

Figure 1: Context organization model based on se-
mantic and stream similarity.

The first part is composed by two components that
represent the structured part of our model and account
for the source identification and fixed d-dimensions
respectively. These d-dimensions allow human users
to select information based on time, location or even
other dimensions, and can be understood as an OLAP
cube helping in the process of filtering information. The

second part represents machine learning features, that
can be used to find similar or related sources of data. Up
until now we have worked on semantic [5, 4] and stream
features [18, 6]. In this paper we continue our work on
stream similarity.

While there are several academic works based on
stream prediction and mining [20], the same can not be
said about stream similarity. Most methods are based on
longest common sub-sequence algorithm [23, 8]. Some
work related with detection patterns in time-series has
been done in financial stock markets [17]. However,
these methods are not ideal for generalized IoT/M2M
data for two main reasons. First, data acquired from
IoT devices tend to be noisy, can be shifted in time
and have different scales. Second, the vast number of
IoT devices implies that there are several streams for the
same phenomenon. Our objective is to learn a represen-
tation of the phenomenon, combining all the streams in a
single model. Due to these reasons we devised our own
generative model. We are interested in characterizing the
“shape” of a stream/time series, the closest analogue that
we known being shape descriptors in image recognition,
such as Roy’s Shape Representation and Global Shape
Context [26]. In fact our model draws inspirations from
the previously mentioned techniques, since it also uses a
grid like structure to capture the “shape” of a stream/time
series.

It is not only IoT that will benefit from stream pat-
terns’ characterization. Any task that requires time-
series clustering and/or classification will benefit from
a stream characterization model. Typical real-world ex-
amples include financial data [2] and medical data [16].
and . Even areas, such as network optimization, BPMN
execution flow and time-series privacy, may benefit from
stream patterns’ characterization. Using the hidden
patterns in network traffic it is possible to extract more
accurate network graphs and achieve better optimiza-
tions [30]. Data-flow errors in BPMN 2.0 process
models, can be detected by mapping them to Petri Nets,
unfolding the execution semantics and detect specific
error patterns [32]. Time series anonymization is an
important problem, by using a (n, l, k)-anonymity model
that transform a time-series without jeopardizing the rel-
evant patterns [19]. Another area that may benefit from
stream characterization is model compression [11, 31].
By capturing the relevant characteristics of a time-series
we can minimize the amount of information transmitted
and stored. It can be specially useful for large IoT
scenarios.

3



Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

3 GENERATIVE MODEL FOR STREAM CHAR-
ACTERIZATION

Before discussing the details of our stream characteri-
zation model, let us discuss its origin. With the advent
of IoT/M2M devices, context-aware platforms require
novel organizational models, learning algorithms and
proper testing. However, it is rather difficult to evaluate
the accuracy of these systems when the environment is
as dynamic and vast as the IoT/M2M environment. In
order to properly test these platforms we require both
a controlled environment and tools to control the input
data.

There are some possibilities, one of the most common
is to use several datasets gathered from actual sensors.
Gathering, pre-processing, classifying and maintaining
these datasets requires human intervention and is time-
consuming. Furthermore, in order to guarantee that the
tests cover all (almost) the possible inputs, large amounts
of data are required. One alternative to this is to develop
a model that captures the information about a determined
phenomenon and is able to generate several instances of
it which are statistically similar. This was the drive to
develop our stream characterization model. Apart from
stream generation, our model structure makes it ideal to
develop similarity metrics. We intend to explore the full
capabilities of this model, as a tailored feature for IoT/
M2M organization, in future publications.

This section will address two different but related
ideas. First, we will present our generative model for
stream characterization based on Markov Chains and
detail its inner workings. Second, we will elaborate on
a stream generator which uses this previously mentioned
model.

3.1 Stream Characterization

Our approach is to model a stream’s behaviour using first
order Markov chains.

Considering a perfect scenario where there is no noise
or errors, most events would thus happen in a very
predictable manner (i.e. without major variances). We
could formulate our model as Equation 1, by knowing
how probable it is for, at a given time instant xi−1 with a
value of yj , a stream at the time xi take a value of yk. In
other words, the probability of having value yk at a time
instant xi knowing its immediate predecessor.

Pi(yk|yj) (1)

For the remainder of this paper we will call the
succession of a value to the one following it (along the x
axis) a jump or transition.

We could then argue that using the method above and
knowing all the probabilities of all the jumps along the

period of the event, we could represent it with quite
high confidence. For the sake of argument, consider
that we had at our disposal such a probability function
as expressed above, and we were given a sequence of
values representing an event. We would like to compute
the similarity (S) between the sequence of values and the
probability function. This can be achieved by verifying
all the values of Pi for all transitions within a sequence’s
period, and either averaging them or using some other
statistical indicator to get a representative, normalized
value of the overall resulting probabilities (see Equa-
tion 2, where n represents the number of samples in the
stream).

S =
1

n

n∑
i=1

Pi (2)

The probability function would assign an high or low
value to each jump of the sequence based on how well it
relates to the events expressed by the probability function
itself. If the sequence’s values were off the event’s, then
the overall probability would be low. On the other hand if
it was high, then we could be confident that this sequence
is similar to the event represented by the function.

The problem arises as we notice that this perfect
scenario is not possible in practical cases, hence if we
intend to use such a function as the one described above
to represent a stream, we need to overcome three major
issues and make a few changes to its definition:

1. Streams representing the same events more com-
monly than not vary widely, for reasons such as
noise, location, time of day, etc;

2. It is impractical, due to both time and space con-
straints, to have a function mapping every tuple
of points ((xi, yj), (xi+1, yk)) into a number (the
probability of the transition);

3. Along the lines of the previous item, it is not rea-
sonable to consider the continuous and/or infinite
domain associated with most events (which would
imply considering infinite values).

Our proposal attempts to solve these issues by overlay-
ing a grid-like structure over the different values a stream
takes along its period, effectively turning each (xi, yj)
in the preceding discussion into a slot (as depicted in
Figure 2). This gap gives rise to two other values that
are now to be considered, ∆x and ∆y, each representing
the resolution of their corresponding axis.

Issue 1 can be solved by overlaying multiple streams
representing a same event, and computing the proba-
bilities that arise from their transitions. Issues 2 and
partially 3 are solved by now considering jumps’ areas
instead of single values, in a sense discretizing both a

4



Ricardo Jesus, Mário Antunes, Diogo Gomes, Rui L. Aguiar: Extracting knowledge from stream behavioural patterns

y

x
∆x

∆y

P0

P1

P2

P3

P4

P5

P6

µ
σ
...

Figure 2: Structure proposed to model stream information. A grid is overlayed over the sample streams, in
order to build a matrix like structure where each slot contains a probability vector, an histogram of values,
and other relevant statistical values (e.g. the mean and standard deviation of the values inside the bin).

stream’s domain and codomain. By the law of large
numbers and assuming that those streams do follow a
pattern (even if with noise and/or erratic behaviour),
one can be sure that eventually the probabilities will
converge. Issue 3 can be further improved in the case
of periodic streams.

Given that most real scenarios are periodic to some
extent, the model can be constructed based on the event’s
period. In case the data has some seasonality property
associated, a model can be contracted in accordance to
each season’s period. The period of the phenomenon is
then taken as the domain of the grid described. This
makes it possible to bear with the otherwise infinite
domain of periodic streams. Each stream’s period is
taken as a 1-period stream by itself.

This way we are capable of characterizing the under-
lying behaviour of some event, based on the behavioural
patterns of some related streams. We say this method is
based on first order Markov chains since it assumes that
there is little to no knowledge lost by only considering
direct transitions along the x axis. This means that we
do not use all the previous values a stream took before
a given xi when computing the probability of being in
some other area in the time slot following (with xi+1 ≡
xi + ∆x). This is done to minimize the computational
complexity that would arise from doing so.

The representation mentioned above can still have a
problem: the notion of “area” itself. If it is too wide
or too narrow, the model fails to capture the relevant
pattern of the event. If any of ∆x or ∆y are too broad,
information about the event will be lost. On the other
hand, if these values are too narrow, the computation’s
complexity of the probabilities will start to degrade.
Even worse, it can make the whole representation too
specific (resulting in overfitting).

In order to minimize this issue we propose to keep
the following values associated to each slot, as shown
in Figure 2:

Probability vector: this is the function which makes
possible representing the nature of the stream using
probabilities. Each Pi maps to the probability of
jumping to the yi following along the x axis (the
transition).

Histogram of values: each slot maintains a histogram
of values, allowing the model to identify which
values are more commonly found within that slot,
minimizing the penalization of having large bins
values. In a sense this adds another dimension to
the model.

Other statistical values: other statistical values may be
kept for further improvements. For example, keep-
ing the average and the standard deviation of the
values within the slot. These are both cheap com-
putationally wise and may be of significance when
evaluating how well a given point fits within the
slot.

Our model also supports the generation of multiple
continuum periods. We modelled this behaviour by com-
puting the probabilities of wrapping around the matrix
representation (i.e. going from the last column to the
first). This way, with the same Markov simplification
made throughout the document, we gave the model the
knowledge to generate continuous stream (in a true infi-
nite stream scenario). This property will become rather
important when considering time shifts in a similarity
metric.

5



Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

3.2 Period Detection

In order to automate the usage of the generator (and
later the similarity component), we have developed a
module for automatic period detection. It works by first
computing a periodogram of a stream, and selecting the k
strongest frequencies from it — commonly named can-
didate frequencies. Then, for each of these candidates,
an autocorrelation factor (ACF) with lag of the inverse
of the frequency (the period) is computed. The period
which gives the best ACF is selected.

Since the sample points of a stream may not be equally
spaced, we drop portions of the stream that do not meet
a minimum percentage of points given the period being
considered. Furthermore, the portions which will be
used are linearly interpolated in order to bring equal
spacing between samples (which is important for the
autocorrelation, otherwise the point-wise operations do
not match). The interpolation is evaluated every 2∆t,
where ∆t is the mean time difference along each original
pair of succeeding sample points. Initially we did not
use interpolation, making the autocorrelation fail due to
the mismatch between samples’ spacing. With linear
interpolation the problem was solved.

3.3 Stream Generation

Apart from stream characterization and similarity es-
timation, our model can also be used to generate
streams. Context-aware platforms, or indeed any plat-
form that deals with context information (IoT/M2M data
included), benefits from a realistic stream generator.
As these platforms become smarter it also becomes
imperative to validate and evaluate the platform in a
controlled environment. In our specific case, initial work
demanded the use of large datasets to carry on tests
and to evaluate the capability of representation of our
organization model. This lead to the development of a
stream generator general enough to be used in a wide
class of streams, which is used to build synthetic datasets
from real ones we have, but which were not as big as
needed.

Such generator would have to output plausible
streams, and not just a stream which would for instance
minimize the errors between itself and the set of streams
given as examples. This constituted an opportunity to
test our proposed representation. The internal structure
of the generator is, thus, a matrix of slots, each with the
values as described in Subsection 3.1. This matrix is
built for each type of pattern we want to learn, from a set
of streams representative of the pattern (e.g. temperature
or humidity). After having the matrix built, we can
traverse it (along its x axis) according to the probabil-
ities and histograms found along the path in order to

generate streams similar to the underlying pattern of the
ones which were previously presented (as depicted in
Figure 3).

Figure 3: Generation process. 1. at each gap, gen-
erate a random value that represents the transition
probability; 2. use the transition matrix to identify
the next bin; 3. at the destination bin, generate a new
value (based on its histogram).

Preliminary tests show how good is the capability of
the generator to learn the most relevant motifs of the
streams, being capable of generating realistic streams
from the representation built. This is further discussed
in Section 5.

3.4 Stream Similarity

For computing the similarity of a given stream when
compared with a certain model, the stream is fitted into
the model (similarly to what is done when building
the model itself). Since at this stage we are dealing
with a scale-dependant technique, streams and models
whose domains are not directly comparable are not being
considered.

The similarity value itself is obtained by traversing the
stream and evaluating, at each transition, the likelihood
(i.e. probability) of having both the stream’s point at the
bin being considered and the transition that the stream
suggests.

Taking the definitions

Phi := Normalized probability of point i of stream
Pti := Normalized probability of the transition i

The similarity expression is then given by Equation 3,
with both sums running over all the stream’s transitions

6



Ricardo Jesus, Mário Antunes, Diogo Gomes, Rui L. Aguiar: Extracting knowledge from stream behavioural patterns

(and hence points).

S =

∑
Pti · Phi∑

Pti
, (3)

In case there is no bin (in the model) to characterize
the point being considered at a given time, then Ph = 0
and Pt = 1 for that parcel. Otherwise, if the bin exists
but there is no possible transition, then Ph = 0 and Pt
is taken as the (normalized) probability of the strongest
transition of the bin. This measures are taken so as to
penalize to different degrees the stream’s parcels which
cannot be compared.

4 IMPLEMENTATION

So far some ideas presented in this paper have appeared,
in a sense, as isolated units. With this in mind, the goal of
this section is to describe how they are brought together,
answering two major scenarios: stream generation and
stream similarity.

Usual stages of machine learning pipelines (e.g. pre-
processing stages where outliers are removed) are omit-
ted, so as to keep the text concise and centered around
the ideas previously presented.

The first algorithm that shall be presented, Algo-
rithm 1, builds a model from a set of streams.

Algorithm 1 Model Building

1: function BUILDMODEL(streams)
2: period← FindPeriod(streams)
3: SplitStreamsByPeriod(streams, period)
4: ∆x, ∆y ← FindResolutionOf(streams)
5: for all stream ∈ streams do
6: SnapToResoltution(stream,∆x,∆y)
7: end for
8: model← ComputeProbabilities(streams)
9: return model

10: end function

The function FindResolutionOf is still only the-
oretical. The resolutions that were used during testing
were found by experimentation. Also, the goal of the
function SnapToResoltution is to fit each stream
into the grid that is being built, for example deciding in
which bin each portion of the stream fits. This is later
used when computing the probabilities of each transition.

The next algorithm to be presented is Algorithm 2,
which given a model generates a stream.

The function GeneratePoint uses the histogram
of a model’s bin to generate a point in accordance
with its distribution. The function GenerateNextBin
uses the probability vector of a bin to determine where

Algorithm 2 Stream Generation

1: function GENERATESTREAM(model, yinit)
2: bin← (0, yinit)
3: genstream← {GeneratePoint(model, bin)}
4: for i← 1,#ColumnsOf(model)− 1 do
5: bin← GenerateNextBin(model, bin)
6: genstream←

genstream
+
{GeneratePoint(model, bin)}

7: end for
8: return genstream
9: end function

the generated stream will flow through. Both of these
notions are discussed in Subsection 3.3.

Finally, the similarity algorithm, Algorithm 3, is de-
scribed, which assigns a similarity score for a stream
against a model.

Algorithm 3 Stream Similarity

1: function SIMILARITY(model, stream)
% Initialization as in lines 2 to 7 of Algorithm 1

2: m1sum← 0
3: m2sum← 0
4: for i← 0,#ColumnsOf(model)− 1 do
5: t← Pt(model, stream, i)
6: h← Ph(model, stream, i)
7: m1sum← m1sum + t · h
8: m2sum← m2sum + t
9: end for

10: return m1sum/m2sum
11: end function

Even though it is stated that the initialization is similar
to the first lines of Algorithm 1, both the period and reso-
lution values used are the ones of the model. Despite this,
they are still computed for the stream itself. They are
compared against the respective values associated with
the model, and in case they are not comparable within
certain bounds, the similarity value is penalized. Also,
exception handling is not included in this description
for brevity. For example, in case a stream’s value is
not present in the model’s bin that it is being compared
with, then default values are used instead (which are
mentioned in Subsection 3.4).

As a final note, the actual implementation of these
methods and associated data structures was carried in
Python3, resorting mainly to the standard libraries,
numpy and scipy.

7



Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

5 PERFORMANCE EVALUATION

This section will present our current results. First, we
evaluate the period detection algorithm. Second, we
present the evaluation of stream generation based upon
our model. Finally, we evaluate the accuracy of our
stream similarity metric. We used a home automation
dataset1 to evaluate our model, it was composed of
three different kinds of natural phenomena: environment
temperature, humidity and light intensity. Each set
considered was composed of approximately one hundred
streams.

5.1 Period Detection

We expected a periodicity of approximately 1 day
(around 86400 s) for each phenomenon, which is further
suggested by visual inspection of the plots of the streams
we used.

Figure 4 shows three histograms, each depicting the
computed periods over approximately fifty streams of the
respective phenomena.

Although including some outliers, we highlight that
the maximums of each plot stand well above the rest of
the values and are indeed close (within a 5% margin) to
the expected 1 day period.

5.2 Stream Generation

We use MSE (mean-square error) and visual represen-
tations to evaluate the generative performance of our
model. This evaluation was carried by k-cross valida-
tion, and is displayed at Table 1. We obtained these
values by selecting one real stream and comparing it with
all the others, and doing the same for a generated stream
(and repeating selecting/generating other streams). It is
interesting to see that the differences between the real
and generated results are not far off.

Meanwhile, Figure 5 enables a more visual evaluation
of our results, plotting real vs generated streams.

We would like to highlight that not only are the curves
similar, but the standard deviation at each point is also
comparable. This suggests that our model does not
seem to be over fitting — the set of learning curves was
composed of heterogeneous samples, which is indeed
propagated to the generated streams.

The MSE values also validate that our generated
curves are not too far off the real ones. Even regarding
“Light”, which scored a much bigger MSE than the other
sets, our model agrees with the results from real streams.

1available at http://db.csail.mit.edu/labdata/
labdata.html

Table 1: MSE values computed for the streams gen-
erated.

Real
Mean Median Stdev

Temperature 10.5 9.3 3.9
Humidity 51.4 37.3 27.9
Light 217360 175633 100361

Generated
Mean Median Stdev

Temperature 10.0 9.3 3.0
Humidity 48.3 49.1 11.8
Light 221271 222265 39933

Our model also supports the generation of multiple
periods. We have called this the “continuum” mode,
which Figure 6 presents a plot of.

We find it relevant to say that the transitions between
periods are smooth and that, without the colouring to
tell them apart, the transition points would probably be
unnoticeable.

5.3 Stream Similarity

The stream similarity technique previously discussed
(Subsection 3.4) was tested by continuously selecting
two different features. A stream of each feature would be
picked, with the remaining streams being used to build a
model. Finally, each of the streams would be matched
against each of the models (including streams and mod-
els relative to the same feature), with the similarity of
the stream to the model being computed. This procedure
was repeated until around two thousand stream-model
matches were obtained. The results are illustrated in
Table 2.

Table 2: Similarity scores obtained.

Stream Model Similarity

humidity 0.68 ± 0.03
humidity light 0.12 ± 0.04

temperature 0.03 ± 0.04

humidity 0.00 ± 0.00
light light 0.71 ± 0.05

temperature 0.00 ± 0.00

humidity 0.11 ± 0.05
temperature light 0.08 ± 0.01

temperature 0.67 ± 0.03

As it can be seen, there is an undeniable abyss be-
tween correct stream-model matches and incorrect ones.

8

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html


Ricardo Jesus, Mário Antunes, Diogo Gomes, Rui L. Aguiar: Extracting knowledge from stream behavioural patterns

0.2 0.4 0.6 0.8 1.0
Period (s) 1e6

0.0

0.2

0.4

0.6

0.8

1e 4 Periodogram for temperature. Max : 86270.03

(a) Temperature

0.2 0.4 0.6 0.8 1.0
Period (s) 1e6

0

1

2

3

4

5

1e 5 Periodogram for humidity. Max : 86749.63

(b) Humidity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Period (s) 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e 5 Periodogram for light. Max : 84294.85

(c) Light

Figure 4: Periodograms for the three phenomena analysed.

Following this test a threshold could easily be built
which would predict with very high confidence whether
a stream was or not a match to a model. In the future
we intend to test with more features in order to verify
whether this pattern holds.

Despite these results it is noticeable that none of the
correct matches produced a score above 0.80, which was
our expectation when we first thought of this test. This
can be justified by the disparity that streams naturally
hold, and which were brought to light in past experi-
ments (Table 1, “real” row). With this in mind, one
cannot expect a stream to match a model with extremely
high similarity, since the model itself is built to bare with
the (many) natural differences of the streams. Extremely
high values of similarity would also indicate that the
model was overfitting. Further validations need to be
carried in order to better verify this, but nonetheless for
the time being this is an idea that seems to be sound.

6 SUMMARY AND CONCLUSIONS

The number of sensing devices is increasing at a steady
step. Each one of them generates massive amounts of
information. However, each device/manufacture shares
context information with different structures, hindering
interoperability in IoT/M2M scenarios.

We tackled this issue by developing an organization
model agnostic to context representation. Our orga-
nization model uses tailored features to automatically
organize data and improve its accuracy. By using our
generative stream model as a tailored feature to describe
stream patterns we believe that our organization model
will be further improved. It is worthwhile to mention
that there are several academic works based on stream
prediction and mining [20], but the same cannot be
said about stream similarity and stream characterization.
Further work needs to be done to assert some ideas

9



Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

16

18

20

22

24

26

28

30

Te
m

pe
ra

tu
re

 (
C)

Real
Generated

(a) Temperature

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

25

30

35

40

45

Hu
m

id
ity

 (R
H 

%
)

Real
Generated

(b) Humidity

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

250

500

750

1000

1250

1500

Lu
x

Real
Generated

(c) Light

Figure 5: The three kinds of generated streams: temperature, humidity and light. The vertical bars represent
the standard deviation (at each point) of 20 different streams.

Day 1 Day 2 Day 3 Day 4 Day 5
Time (days)

18

20

22

24

26

28

30

T
e
m

p
e
ra

tu
re

 (
C

)

Figure 6: 5 temperature streams generated as a continuum. The generator had been trained with around 100
streams prior to the generation.

expressed in this paper, but our stream characterization
model appears to be a viable option.

We are currently devising a similarity metric to esti-

mate the similarity between two stream models. Being
able to analyse if two different stream models are similar
allow us to better organize context information based

10



Ricardo Jesus, Mário Antunes, Diogo Gomes, Rui L. Aguiar: Extracting knowledge from stream behavioural patterns

on similarity. This allows us to organize data based
not only on semantic features [4], but also on stream
patterns. Furthermore, our model will serve as a strong
filter, trimming the search space so that more advanced
techniques can used. For example, IoT/M2M platforms
can use machine learning techniques over our context
organization model to provide smart and proactive ser-
vices, high level inference, amongst others.

There is room to further improve our stream charac-
terization model. Specially to cope with the variability
associated with IoT/M2M scenarios. Some questions
which are yet to be answered include: Is scale (along
the y axis) important? If yes, in which cases and
how to work with it? How to cope with time and
location differences across the different sensors? We
will continue our research on these topics and hopefully
answer these questions in future publications.

Meanwhile, the ability to generate streams resembling
a given set of learning ones can be useful in many
situations. For instance, to generate large synthetic
datasets where otherwise there is no specific generator
available. Our general purpose generator has another
big advantage, since it improves the repeatability and
validity of IoT/M2M and context-aware platforms. Cur-
rently these platforms use advanced machine learning
algorithms to improve and optimize several processes.
Having the ability to test them for a long time in a
controlled environment is extremely important.

ACKNOWLEDGEMENTS

The present study was developed in the scope of the
Smart Green Homes Project [POCI-01-0247-FEDER-
007678], a co-promotion between Bosch Termotec-
nologia S.A. and the University of Aveiro. It is
financed by Portugal 2020 under the Competitive-
ness and Internationalization Operational Program, and
by the European Regional Development Fund. This
work was also partially supported by research grant
SFRH/BD/94270/2013.

REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles, “Towards a better
understanding of context and context-awareness,”
in Proc. of the 1st international symposium on
Handheld and Ubiquitous Computing, 1999, pp.
304–307.

[2] S. Aghabozorgi and Y. W. Teh, “Stock market co-
movement assessment using a three-phase cluster-
ing method,” Expert Systems with Applications,
vol. 41, no. 4, pp. 1301–1314, 2014.

[3] M. Antunes, D. Gomes, and R. Aguiar, “Context
storage for m2m scenarios,” in Communications
(ICC), 2014 IEEE International Conference on.
IEEE, 2014, pp. 3664–3669.

[4] ——, “Learning semantic features from web ser-
vices,” in Future Internet of Things and Cloud
(FiCloud), 2016 4rd International Conference on.
IEEE, 2016.

[5] M. Antunes, D. Gomes, and R. L. Aguiar, “Scal-
able semantic aware context storage,” Future Gen-
eration Computer Systems, vol. 56, pp. 675–683,
Mar. 2016.

[6] M. Antunes, R. Jesus, D. Gomes, and R. Aguiar,
“Improve iot/m2m data organization based on
stream patterns,” in 2017 IEEE 5th International
Conference on Future Internet of Things and Cloud
(FiCloud). IEEE, 2017.

[7] G. Avram, “At the crossroads of knowledge man-
agement and social software,” Electronic Journal
of Knowledge Management, vol. 4, no. 1, pp. 1–10,
January 2006.

[8] A. Camerra, J. Shieh, T. Palpanas, T. Rakthan-
manon, and E. Keogh, “Beyond one billion time
series: indexing and mining very large time series
collections with iSAX2+,” Knowledge and Infor-
mation Systems, vol. 39, no. 1, pp. 123–151, 2014.

[9] R. Cattell, “Scalable sql and nosql data stores,”
SIGMOD Rec., vol. 39, no. 4, pp. 12–27, May
2011.

[10] K.-C. Chen and S.-Y. Lien, “Machine-to-machine
communications: Technologies and challenges,”
Ad Hoc Networks, vol. 18, pp. 3–23, 2014.

[11] M. Danieletto, N. Bui, and M. Zorzi, “Improving
internet of things communications through com-
pression and classification,” in 2012 IEEE In-
ternational Conference on Pervasive Computing
and Communications Workshops, March 2012, pp.
284–289.

[12] S. K. Datta, C. Bonnet, R. P. F. D. Costa, and
J. Härri, “Datatweet: An architecture enabling
data-centric iot services,” in 2016 IEEE Region 10
Symposium (TENSYMP), May 2016, pp. 343–348.

[13] A. K. Dey, “Understanding and using context,”
Personal and Ubiquitous Computing, vol. 5, no. 1,
pp. 4–7, 2001.

[14] R. Fantacci, T. Pecorella, R. Viti, and C. Car-
lini, “Short paper: Overcoming iot fragmentation
through standard gateway architecture,” in 2014
IEEE World Forum on Internet of Things (WF-IoT),
March 2014, pp. 181–182.

11



Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

[15] T. Gruber, “Ontology of folksonomy: A mash-
up of apples and oranges,” International Journal
on Semantic Web and Information Systems, vol. 3,
no. 2, pp. 1–11, 2007.

[16] S. Hirano and S. Tsumoto, “Cluster analysis of
time-series medical data based on the trajectory
representation and multiscale comparison tech-
niques,” in Sixth International Conference on Data
Mining (ICDM’06), Dec 2006, pp. 896–901.

[17] S. Jeon, B. Hong, and V. Chang, “Pattern graph
tracking-based stock price prediction using big
data,” Future Generation Computer Systems, 2017.
[Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X17301991

[18] R. Jesus, M. Antunes, D. Gomes, and R. Aguiar,
“Extracting knowledge from stream behavioural
patterns,” in Proceedings of the 2nd International
Conference on Internet of Things, Big Data and
Security. SCITEPRESS - Science and Technology
Publications, 2017.

[19] S. Kessler, E. Buchmann, T. Burghardt,
and K. Böhm, “Pattern-sensitive time-series
anonymization and its application to energy-
consumption data,” Open Journal of Information
Systems (OJIS), vol. 1, no. 1, pp. 3–22, 2014.
[Online]. Available: http://nbn-resolving.de/urn:
nbn:de:101:1-201705194696

[20] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüller-
meier, M. Last, V. Lemaire, T. Noack, A. Shaker,
S. Sievi, M. Spiliopoulou, and J. Stefanowski,
“Open challenges for data stream mining research,”
SIGKDD Explor. Newsl., vol. 16, no. 1, pp. 1–10,
Sep. 2014.

[21] N. Leavitt, “Will nosql databases live up to their
promise?” Computer, vol. 43, no. 2, pp. 12–14,
February 2010.

[22] P. Lopes and J. L. Oliveira, “Coeus: Semantic web
in a box for biomedical applications,” Journal of
Biomedical Semantics, vol. 3, no. 1, p. 11, 2012.

[23] A. Marascu, S. A. Khan, and T. Palpanas, “Scalable
similarity matching in streaming time series,” in
Advances in Knowledge Discovery and Data Min-
ing: 16th Pacific-Asia Conference, PAKDD 2012
Proceedings, Part II. Springer Berlin Heidelberg,
June 2012, pp. 218–230.

[24] G. A. Miller, “Wordnet: A lexical database for
english,” Commun. ACM, vol. 38, no. 11, pp. 39–
41, November 1995.

[25] T. Mota, N. Baker, B. Moltchanov, R. Ioanna, and
K. Frank, “Towards pervasive smart spaces: A
tale of two projects,” in Future Network & Mobile

Summit 2010. The Second International Workshop
on Information Quality and Quality of Service for
Pervasive Computing in Conjunction with IEEE
PERCOM 2010, 2010.

[26] R. Pereira and L. Seabra Lopes, Learning
Visual Object Categories with Global Descriptors
and Local Features. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 225–
236. [Online]. Available: https://doi.org/10.1007/
978-3-642-04686-5 19

[27] C. Perera, A. Zaslavsky, P. Christen, and D. Geor-
gakopoulos, “Context aware computing for the in-
ternet of things: A survey,” IEEE Communications
Surveys Tutorials, vol. 16, no. 1, pp. 414–454,
2014.

[28] J. Robert, S. Kubler, Y. L. Traon, and K. Främling,
“O-mi/o-df standards as interoperability enablers
for industrial internet: A performance analysis,”
in IECON 2016 - 42nd Annual Conference of the
IEEE Industrial Electronics Society, October 2016,
pp. 4908–4915.

[29] C. Shirky, “Ontology is overrated: Categories,
links, and tags,” http://shirky.com/writings/
ontology overrated.html, May 2005, accessed:
22-07-2013.

[30] G. Sun, V. Chang, G. Yang, and D. Liao,
“The cost-efficient deployment of replica servers
in virtual content distribution networks for data
fusion,” Information Sciences, 2017. [Online].
Available: http://www.sciencedirect.com/science/
article/pii/S0020025517308769

[31] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot data
compression: Sensor-agnostic approach,” in 2015
Data Compression Conference, April 2015, pp.
303–312.

[32] S. von Stackelberg, S. Putze, J. Mülle, and
K. Böhm, “Detecting data-flow errors in bpmn
2.0,” Open Journal of Information Systems
(OJIS), vol. 1, no. 2, pp. 1–19, 2014. [Online].
Available: http://nbn-resolving.de/urn:nbn:de:101:
1-2017052611934

[33] T. Winograd, “Architectures for context,” Hum.-
Comput. Interact., vol. 16, no. 2, pp. 401–419,
December 2001.

[34] F. Wortmann, K. Flüchter et al., “Internet of
things,” Business & Information Systems Engineer-
ing, vol. 57, no. 3, pp. 221–224, 2015.

12

http://www.sciencedirect.com/science/article/pii/S0167739X17301991
http://www.sciencedirect.com/science/article/pii/S0167739X17301991
http://nbn-resolving.de/urn:nbn:de:101:1-201705194696
http://nbn-resolving.de/urn:nbn:de:101:1-201705194696
https://doi.org/10.1007/978-3-642-04686-5_19
https://doi.org/10.1007/978-3-642-04686-5_19
http://shirky.com/writings/ontology_overrated.html
http://shirky.com/writings/ontology_overrated.html
http://www.sciencedirect.com/science/article/pii/S0020025517308769
http://www.sciencedirect.com/science/article/pii/S0020025517308769
http://nbn-resolving.de/urn:nbn:de:101:1-2017052611934
http://nbn-resolving.de/urn:nbn:de:101:1-2017052611934


Ricardo Jesus, Mário Antunes, Diogo Gomes, Rui L. Aguiar: Extracting knowledge from stream behavioural patterns

AUTHOR BIOGRAPHIES

Ricardo Jesus is a MSc student
in Computers and Telematics
Engineering from the University
of Aveiro. He received his bach-
elor’s in Computers and Telem-
atics Science from the same uni-
versity in 2017. His current re-
search interests include subjects
such as number theory and ar-
tificial intelligence (namely ma-

chine learning). He has been a member of ATNoG,
a research group of the Instituto de Telecomunicações
(Telecommunications Institute) since 2015. At ATNoG
his main research has been targeted towards pattern char-
acterization using probabilistic models, being involved
in projects such as TVPulse and SCoT.

Mário Antunes received his
computer and telematics
engineering M.Sc. degree
in 2011, with first class
honors, from the Electronics,
Telecommunication and
Informatics Department,
University of Aveiro, Portugal.
He is currently working as a
researcher for the Advanced

Telecommunications and Networks Group at IT-Aveiro.
His main research areas focus on Knowledge Extraction
and Context Storage in Internet of Things (IoT)
Scenarios using Machine Learning techniques and
Big Data repositories. His works include developing
efficient ways to deal with unstructured information.
These techniques are being implemented and evaluated
in advance machine-to-machine projects, such as
APOLLO and SCOT.

Dr. Diogo Gomes graduated in
Computers and Telematics Engi-
neering from the University of
Aveiro in 2003 with first class
honors, and concluded his Ph.D.
by the same University on Re-
source Optimization for Broad-
cast Networks in 2009. He is
currently an Auxiliar Professor
at the University of Aveiro. In

the last 15 years has participated in several EU funded
projects such as IST-Mobydick, IST-Daidalos, IST-
Akogrimo, IST-C-MOBILE, ICT-C-Cast, ICT-Onelab2
and ICT-Medieval where besides conducting research
on QoS, IP Mobility, Multicast/Broadcast and Service
& Application Development has always been deeply
involved in the deployment of prototypes and demon-
strations. Recently his research interest are related to
Knowledge Extraction and Context Storage in Internet
of Things (IoT) Scenarios using Machine Learning tech-
niques and Big Data repositories.

Rui L. Aguiar is full Professor at
the University of Aveiro where
he received his Ph.D. degree in
2001 in electrical engineering.
He has been an adjunct profes-
sor at the INI, Carnegie Mel-
lon University and is invited re-
searcher at Universidade Federal
de Uberlandia. His current re-

search interests are centered on advanced communica-
tion systems and he has more than 400 published papers.
He is a member of the steering Board of the Networld
2020 ETP. He has served as Technical and General
Chair of multiple conferences and is Associate Editor of
several journals. He is a member of ACM and a senior
member of IEEE.

13


	Introduction
	Related Work
	Generative model for stream characterization
	Stream Characterization
	Period Detection
	Stream Generation
	Stream Similarity

	Implementation
	Performance evaluation
	Period Detection
	Stream Generation
	Stream Similarity

	Summary and Conclusions

