458 research outputs found
Creep in fibre-reinforced polymer mat composites
Tensile creeps have been conducted upon a woven, glass-fibre laminated epoxy composite and a 0/90° cross ply, carbon fibre reinforced epoxy composite. For the laminate loading was aligned with a fibre direction. For the ply the loading was inclined to the fibres (off-axis).
Testing to stress levels up to 200 MPa and temperatures in the range 20°- 200°C has revealed a form of creep in each material. The creep observed is essentially primary in nature but with extended time •1000 h, it may exhaust or resemble a pseudo-secondary regime with a low rate. Where the load carrying capacity is lost, through fibre breakage or tab slip, the creep rate accelerates suddenly to infinity in a few hours. Smooth creep curves apply to successful tests but many irregular curves resulted from grip failure. A phenomenological approach was used to model smooth curves using a summation of instantaneous, primary and secondary strain terms. For the mat reinforcement a consistent trend was not found between the secondary creep rate and a stress that was raised incrementally upon the same testpiece. However the cumulative instantaneous strain provided the correct elastic modulus. Creep in the solid laminate was believed to be due to a fibre straightening that yielded a limiting strain in a time beyond which the process exhausts.
Creep in cfrc was only evident when the fibres were inclined to the stress axis, indicating a viscous flow in the matrix. Moreover, it is believed that a viscous shear sliding between laminates or plies is more likely to contribute to an off-axis deformation mode which is not strain limited.http://www.brunel.ac.uk/about/acad/sed/sedstaff/design/DavidRee
Improving prevention, monitoring and management of diabetes among ethnic minorities: contextualizing the six G’s approach
Objective: People from Black, Asian and Minority Ethnic (BAME) groups are known to have an increased risk of devel-oping diabetes and face greater barriers to accessing healthcare resources compared to their ‘white British’ counter-parts. The extent of these barriers varies by demographics and different socioeconomic circumstances that people find themselves in. The purpose of this paper is to present and discuss a new framework to understand, disentangle and tackle these barriers so that improvements in the effectiveness of diabetes interventions for BAME communities can be achieved.
Results: The main mediators of lifestyle behavioural change are gender, generation, geography, genes, God/religion, and gaps in knowledge and economic resources. Dietary and cultural practices of these individuals significantly vary according to gender, generation, geographical origin and religion. Recognition of these factors is essential in increas-ing knowledge of healthy eating, engagement in physical activity and utilisation of healthcare services. Use of the six G’s framework alongside a community centred approach is crucial in developing and implementing culturally sensi-tive interventions for diabetes prevention and management in BAME communities. This could improve their health outcomes and overall wellbeing
Lepton Acceleration in Pulsar Wind Nebulae
Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair
winds emanating from within the pulsar light cylinder. Their radiative
dissipation in various wavebands is significantly different from that of their
pulsar central engines: the broadband spectra of PWNe possess characteristics
distinct from those of pulsars, thereby demanding a site of lepton acceleration
remote from the pulsar magnetosphere. A principal candidate for this locale is
the pulsar wind termination shock, a putatively highly-oblique,
ultra-relativistic MHD discontinuity. This paper summarizes key characteristics
of relativistic shock acceleration germane to PWNe, using predominantly Monte
Carlo simulation techniques that compare well with semi-analytic solutions of
the diffusion-convection equation. The array of potential spectral indices for
the pair distribution function is explored, defining how these depend
critically on the parameters of the turbulent plasma in the shock environs.
Injection efficiencies into the acceleration process are also addressed.
Informative constraints on the frequency of particle scattering and the level
of field turbulence are identified using the multiwavelength observations of
selected PWNe. These suggest that the termination shock can be comfortably
invoked as a principal injector of energetic leptons into PWNe without
resorting to unrealistic properties for the shock layer turbulence or MHD
structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
Efficacy and safety of dopamine agonists in traumatic brain injury: a systematic review of randomized controlled trials
Recommended from our members
A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset
During geomagnetic substorms, stored magnetic and plasma thermal energies are explosively converted into plasma kinetic energy. This rapid reconfiguration of Earth’s nightside magnetosphere is manifest in the ionosphere as an auroral display that fills the sky. Progress in understanding of how substorms are initiated is hindered by a lack of quantitative analysis of the single consistent feature of onset; the rapid brightening and structuring of the most equatorward arc in the ionosphere. Here, we exploit state-of-the-art auroral measurements to construct an observational dispersion relation of waves during substorm onset. Further, we use kinetic theory of high-beta plasma to demonstrate that the shear Alfven wave dispersion relation bears remarkable similarity to the auroral dispersion relation. In contrast to prevailing theories of substorm initiation, we demonstrate that auroral beads seen during the majority of substorm onsets are likely the signature of kinetic Alfven waves driven unstable in the high-beta magnetotail
Migratory corridors and foraging hotspots: Critical habitats identified for Mediterranean green turtles
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordAim: Levels of sea turtle bycatch in the Mediterranean are thought to be unsustainable. We provide a comprehensive overview of adult green turtle (Chelonia mydas) distribution during nesting, migration and foraging phases, highlighting transitory as well as residential areas of high use to facilitate adequate protection for this long-lived, migratory species. Location: Mediterranean Sea. Methods: Thirty-four females were satellite tracked from breeding grounds in the four countries with major nesting (Cyprus, Turkey, Israel and Syria) for a total of 8521 (mean: 251) tracking days in a collaborative effort to summarize the most comprehensive set of distribution data thus far assembled for this species in the Mediterranean. Results: Ten foraging grounds are identified, with two major hotspots in Libya accounting for >50% of turtles tracked to conclusive endpoints. The coastlines of Egypt and Libya contain high densities of migrating turtles following the nesting season, particularly July-September, and likely also pre-nesting (April-June). A high-use seasonal pelagic corridor running south-west from Turkey and Cyprus to Egypt is also evident, used by >50% of all tracked turtles. Main conclusions: Bycatch levels and mortality rates for the key foraging areas and high-density seasonal pathways identified here are largely unknown and should be investigated as a priority. We recommend that the Gulf of Sirte in Libya be explored as a potential biodiversity hotspot and considered for proposal as a marine protected area (MPA). Green turtle fidelity to nesting beaches, foraging areas and migratory pathways renders them vulnerable to localized threats but enables targeted mitigation measures and protection
How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?
Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.The authors’ lab is funded by the Wellcome Trust (093008/Z10/Z) and the Medical Research Council (MR/L008246/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.ppat.100525
A Social Identity Approach to Sport Psychology: Principles, Practice, and Prospects.
Drawing on social identity theory and self-categorization theory, we outline an approach to sport psychology that understands groups not simply as features of sporting contexts but rather as elements that can be, and often are, incorporated into a person's sense of self and, through this, become powerful determinants of their sport-related behavior. The underpinnings of this social identity approach are outlined, and four key lessons for sport that are indicative of the analytical and practical power of the approach are presented. These suggest that social identity is the basis for sports group (1) behavior, (2) formation and development, (3) support and stress appraisal, and (4) leadership. Building on recent developments within sport science, we outline an agenda for future research by identifying a range of topics to which the social identity approach could fruitfully contribute
Recommended from our members
Generation of strength in a drying film: How fracture toughness depends on dispersion properties
The fracture toughness of colloidal films is measured by characterizing cracks which form during directional drying. Images from a confocal microscope are processed to measure the crack width as a function of distance from the crack tip. Applying theory for thin elastic films the fracture toughness is extracted. It is found that the fracture toughness scales with the particle size to the −0.8 power and that the critical energy release rate scales with the particle size to the −1.3 power. In addition, the fracture toughness is found to increase at lower evaporation rates, but the film thickness does not have a significant effect.We thank Professor Bill Clegg for helpful discussions, and Martin Lippert for help with matlab, as well as the Ernest-Solvay-Stiftung and Studienstiftung des deutschen Volkes for financial support of the research visit of N.B.-B. from Karlsruhe Institute of Technology (KIT) to the University of Cambridge
Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications
OBJECTIVE: To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. BACKGROUND: Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women's health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. METHODS: The largest clinical and cadaveric anatomical study (n=315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. RESULTS: Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87-91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. CONCLUSION: We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG
- …
