550 research outputs found

    GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles.

    Get PDF
    Motivation In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results Here we present GeneTIER (Gene TIssue Expression Ranker), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias towards the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/ Contact: [email protected]

    Spontaneous Generation of Patient-Specific Retinal Pigment Epithelial Cells Using Induced Pluripotent Stem Cell Technology

    Get PDF
    Stem cell technology has a number potential uses when it comes to the eye, particularly disease and developmental modelling, and as potential therapeutic source. A variety of protocols have been developed that facilitate the generation of the different cell types found within the eye, as well as those that produce a facsimile of the developing eye in vitro. This chapter introduces the importance of the Retinal Pigment Epithelium (RPE) in maintaining visual function. We then focus on methods developed by our group to produce RPE from patient skin samples using human induced pluripotent stem cell technology (iPSC)

    Rapid Visualisation of Microarray Copy Number Data for the Detection of Structural Variations Linked to a Disease Phenotype

    Get PDF
    Whilst the majority of inherited diseases have been found to be caused by single base substitutions, small insertions or deletions (<1Kb), a significant proportion of genetic variability is due to copy number variation (CNV). The possible role of CNV in monogenic and complex diseases has recently attracted considerable interest. However, until the development of whole genome, oligonucleotide micro-arrays, designed specifically to detect the presence of copy number variation, it was not easy to screen an individual for the presence of unknown deletions or duplications with sizes below the level of sensitivity of optical microscopy (3–5 Mb). Now that currently available oligonucleotide micro-arrays have in excess of a million probes, the problem of copy number analysis has moved from one of data production to that of data analysis. We have developed CNViewer, to identify copy number variation that co-segregates with a disease phenotype in small nuclear families, from genome-wide oligonucleotide micro-array data. This freely available program should constitute a useful addition to the diagnostic armamentarium of clinical geneticists

    Living on the edge: how philopatry maintains adaptive potential

    Get PDF
    Without genetic variation, species cannot cope with changing environments, and evolution does not proceed. In endangered species, adaptive potential may be eroded by decreased population sizes and processes that further reduce gene flow such as philopatry and local adaptations. Here, we focused on the philopatric and endangered loggerhead sea turtle (Caretta caretta) nesting in Cape Verde as a model system to investigate the link between adaptive potential and philopatry. We produced a dataset of three complementary genomic regions to investigate female philopatric behaviour (mitochondrial DNA), male-mediated gene flow (microsatellites) and adaptive potential (major histocompatibility complex, MHC). Results revealed genetically distinct nesting colonies, indicating remarkably small-scale philopatric behaviour of females. Furthermore, these colonies also harboured local pools of MHC alleles, especially at the margins of the population's distribution, which are therefore important reserves of additional diversity for the population. Meanwhile, directional male-mediated gene flow from the margins of distribution sustains the adaptive potential for the entire rookery. We therefore present the first evidence for a positive association between philopatry and locally adapted genomic regions. Contrary to expectation, we propose that philopatry conserves a high adaptive potential at the margins of a distribution, while asymmetric gene flow maintains genetic connectivity with the rest of the population

    Prostate-specific membrane antigen: evidence for the existence of a second related human gene.

    Get PDF
    Prostate-specific membrane antigen (PSM) is a glycoprotein recognised by the prostate-specific monoclonal antibody 7E11-C5, which was raised against the human prostatic carcinoma cell line LNCaP. A cDNA clone for PSM has been described. PSM is of clinical importance for a number of reasons. Radiolabelled antibody is being evaluated both as an imaging agent and as an immunotherapeutic in prostate cancer. Use of the PSM promoter has been advocated for gene therapy applications to drive prostate-specific gene expression. Although PSM is expressed in normal prostate as well as in primary and secondary prostatic carcinoma, different splice variants in malignant tissue afford the prospect of developing reverse transcription-polymerase chain reaction (RT-PCR)-based diagnostic screens for the presence of prostatic carcinoma cells in the circulation. We have undertaken characterisation of the gene for PSM in view of the protein's interesting characteristics. Unexpectedly, we have found that there are other sequences apparently related to PSM in the human genome and that PSM genomic clones map to two separate and distinct loci on human chromosome 11. Investigation of the function of putative PSM-related genes will be necessary to enable us to define fully the role of PSM itself in the development of prostatic carcinoma and in the clinical management of this malignancy

    Primordial Black Holes: sirens of the early Universe

    Full text link
    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms

    Get PDF
    Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs β‰₯10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs

    OVA: Integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization

    Get PDF
    Motivation: Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. Results: Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype. We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool

    The use of high-frequency ultrasound imaging and biofluorescence for in vivo evaluation of gene therapy vectors

    Get PDF
    Background: Non-invasive imaging of the biodistribution of novel therapeutics including gene therapy vectors in animal models is essential. Methods: This study assessed the utility of high-frequency ultrasound (HF-US) combined with biofluoresence imaging (BFI) to determine the longitudinal impact of a Herpesvirus saimiri amplicon on human colorectal cancer xenograft growth. Results: HF-US imaging of xenografts resulted in an accurate and informative xenograft volume in a longitudinal study. The volumes correlated better with final ex vivo volume than mechanical callipers (R = 0.7993, p = 0.0002 vs. R = 0.7867, p = 0.0014). HF-US showed that the amplicon caused lobe formation. BFI demonstrated retention and expression of the amplicon in the xenografts and quantitation of the fluorescence levels also correlated with tumour volumes.Conclusions: The use of multi-modal imaging provided useful and enhanced insights into the behaviour of gene therapy vectors in vivo in real-time. These relatively inexpensive technologies are easy to incorporate into pre-clinical studies
    • …
    corecore