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Abstract

Motivation: In attempts to determine the genetic causes of human disease, researchers are often

faced with a large number of candidate genes. Linkage studies can point to a genomic region con-

taining hundreds of genes, while the high-throughput sequencing approach will often identify a

great number of non-synonymous genetic variants. Since systematic experimental verification of

each such candidate gene is not feasible, a method is needed to decide which genes are worth

investigating further. Computational gene prioritization presents itself as a solution to this problem,

systematically analyzing and sorting each gene from the most to least likely to be the disease-

causing gene, in a fraction of the time it would take a researcher to perform such queries manually.

Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based applica-

tion for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally

used in candidate disease gene prioritization applications with experimental data from tissue-

specific gene expression datasets and thus largely overcomes the bias toward the better character-

ized genes/diseases that commonly afflict other methods. We show that our approach is capable of

accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study

examples.

Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/.

Contact: umaan@leeds.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Current high-throughput sequencing methods used for disease gene

discovery can generate very large volumes of data. While the extrac-

tion of non-synonymous, potentially deleterious variants can be eas-

ily automated, this often results in the identification of thousands of

candidate disease genes. Since the experimental verification of an in-

dividual gene can be both difficult and time consuming, some

method to prioritize the order in which such verification is sought is

often employed. A common approach is to examine biological data-

bases and literature for information pertaining to each candidate

disease gene, in order to select the most promising genes. This can

be both slow and error-prone, as the data are spread across multiple

resources with no common structure. Nor can this type of analysis

be quantified, since the selection is based solely on the subjective im-

pressions of the researcher.
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In light of these challenges, various computational gene priori-

tization methods have been proposed. These vary substantially in

terms of both intended usage and underlying algorithms (reviewed

in Tranchevent et al., 2011). Generalized methods rely extensively

on data mining of sequence information, gene expression datasets,

functional annotations and/or protein–protein interactions. These

data are most frequently employed in a ‘guilt-by-association’ frame-

work, in which candidate disease genes are ranked based on the

strength of relationships and/or similarities to genes already known

to be linked with the disease. One of the major drawbacks of such

approaches is the bias introduced toward better characterized genes

and/or diseases. Thus, in particular where little prior knowledge

about the disease and/or gene is available, accurate prioritization of

putative disease genes remains a challenge.

The availability and wide coverage of experimental conditions of

gene expression datasets might alleviate issues arising from incom-

plete data, as current technologies allow for the quantification of an

entire transcriptome. Indeed, gene expression data are a crucial

constituent of several web-based gene prioritization applications;

however, it tends to be used in concert with other data types, such

as pathway/interaction networks or functional annotations.

Established web tools such as ToppGene (Chen et al., 2009),

Endeavour (Tranchevent et al., 2008) and CANDID (Hutz et al.,

2008) employ a modular approach to prioritization, scoring candi-

dates based on a consensus from multiple data sources. Even though

it has been demonstrated that consensus methods are more accurate

than approaches utilizing fewer data categories (Bornigen et al.,

2012), the former have been criticized for both the ‘guilt-by-associ-

ation’ bias and failure to exploit the best performing methods for

each component (Chen et al., 2011).

More specialized algorithms often integrate gene expression data

into a heterogeneous (Chen et al., 2011, Ma et al., 2007, Nitsch

et al., 2011) or homogenous (van Dam et al., 2012) network, where

distance between genes can be derived from and/or weighted by dif-

ferential expression or co-expression values. Alternatively, some

methods (Chen et al., 2009, Masotti et al., 2008, Seelow et al.,

2008) consider gene co-expression in a non-network context, utiliz-

ing common statistical vector correlation measures to rank candi-

date disease genes based on how well their expression patterns

correlate with those of genes known to be directly or indirectly

linked to the disease.

Fewer applications attempt to apply tissue-specific expression

patterns for gene prioritization tasks. Endeavour (Tranchevent

et al., 2008) incorporates gene expression data from 79 normal

human tissues found in Gene Expression Atlas, comparing gene ex-

pression between candidate and user-supplied seed genes across tis-

sues. A recent update to PhenoDigm (Oellrich and Smedley, 2014

Smedley et al., 2013) has incorporated tissue-specific, binary mouse

gene expression data from 21 mouse tissues and derived phenotype-

tissue associations in order to supplement its phenotype-based

queries.

Nonetheless, none of these approaches distance themselves en-

tirely from the ‘guilt-by-association’ approach. Here, we investigate

the use of publicly available gene expression data as the sole means

of prioritizing candidate disease genes. The resulting web applica-

tion GeneTIER scores candidate disease genes based on the hypoth-

esis that genes responsible for a tissue(s)-specific phenotype are

expected to be more highly expressed in affected than unaffected tis-

sues. GeneTIER depends on an extensive database that has been

built using publicly available microarray and RNA sequencing data-

sets and is composed of several million expression values for numer-

ous normal tissues. This enables the creation of a global, cross-tissue

expression profile for each candidate disease gene, permitting

expression profile-based prioritization without reliance on or re-

quirement for other prior knowledge about the disease or candidate

genes. GeneTIER should thus be suitable for prioritization of candi-

dates for poorly characterized diseases.

2 Methods

2.1 Database
The Gene expression database contains 9 972 862 baseline gene ex-

pression values from microarray and RNA-Seq experiments, encom-

passing 140 different control, non-diseased mouse and human tissue

types. The database was assembled from public domain sources,

including datasets from Gene Expression Atlas (Petryszak et al.,

2014), RNA-Seq Expression Atlas (Krupp et al., 2012),

ArrayExpress (Rocca-Serra et al., 2003) and Gene Expression

Omnibus (Barrett et al., 2009).

Microarray probe set to Ensembl gene transcript identifier map-

pings were downloaded from the Biomart resource (Kasprzyk,

2011). As per recommended practice, ambiguous data arising from

microarray probes which hybridize to more than one distinct gene

were discarded (Ramasamy et al., 2008). Similarly, HGNC, Ensembl

and Entrez and RefSeq gene identifiers were obtained from Biomart.

UCSC gene names and exon boundary coordinates were down-

loaded using the UCSC Genome Browser’s ‘Table’ page (Karolchik

et al., 2004) using the hg19 human genome assembly.

Mouse–human gene orthologs were downloaded from MGI (Bult

et al., 2008) and mapped using HomoloGene (Flicek et al., 2014).

2.2 The gene prioritization algorithm
Candidate genes are ranked based on several factors derived from

gene expression data. These comprise the levels of expression in the

affected tissues; variance in expression across all tissues; and expres-

sion level differences between affected and unaffected tissues. The

base score, ðSgÞ, for each candidate disease gene is calculated using

Equation (1):

Sg ¼
X
t�T

zt if zt ¼ 0

zt � 1þ ln
zt

z
�

� �
8><
>: (1)

where t is an affected tissue in a set of all affected tissues T; zt is the

mean of modified z-scores (see below) for tissue t; and z
�

is the me-

dian modified z-score across all tissues. If gene expression in an af-

fected tissue is greater than its baseline expression the natural

logarithm ratio is positive; otherwise the value is negative. The value

of ðSgÞ is a fractional modifier, favoring genes which show elevated

gene expression in disease-associated tissues, compared with tissues

not linked to the disease phenotype, even if the expression value is

relatively low. The score can be further adjusted for highly expressed

genes which takes into account the level of variance in expression

across all tissues in order to reduce the contention of highly ubiqui-

tously expressed housekeeping genes. When included in the analysis,

the results from human RNA sequencing, human microarray, mouse

RNA sequencing and mouse microarray data are each considered

separately, and combined to generate the final ranking score. In

cases where incomplete data may arise—for example, genes which

are not probed on the microarray or are ambiguous, the instance

may still be scored using only one evidence type.When the final

ranking score is derived from human and mouse data, the relative

contribution of mouse tissue datasets relative to the human datasets

can be adjusted by the user.
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Modified z-scores for all RNA sequencing and microarray data-

sets were calculated as shown in Equation (2):

ze2E ¼
0:6745 � ðe� EÞ

medianðje� E
�
jÞ
; (2)

where E denotes a set of normalized expression values in an experi-

ment, with individual elements e; E is thus the mean value of E and

the denominator is the median absolute deviation, where e is an in-

dividual element of E and E
�

is the median of all elements in E.

The modified z-scores enable the transformation of non-

normally distributed gene expression data and measure how each

data point differs from the typical observations within the dataset.

This transformation serves both to aid the prioritization and to fa-

cilitate better comparability between microarray datasets, as it has

been suggested that rank-based transformations of microarray data

alleviate some of the issues associated with comparing cross-plat-

form, cross-laboratory data (Irizarry et al., 2005).

2.3 Benchmarking dataset
The performance of the application was evaluated using a set of

1000 gene-disease associations, which was generated using the ‘The

Human Phenotype Ontology’ (HPO) (Kohler et al., 2014) dataset as

a source for disease genes and associated phenotypes. The HPO is a

curated ontology, organizing human disease phenotypes described

in the Online Inheritance In Man (OMIM) database (URL: http://

omim.org/), as well as Orphanet (URL: http://www.orpha.net) and

medical literature in a structured, controlled vocabulary. This

enabled the generation of a large dataset while bypassing any inac-

curacies that can arise from the lack of precision when text-mining

unstructured entries in OMIM (which sometimes describe legacy or

historical information).

A sub-group of all HPO phenotypes was selected based on the

following criteria: high term specificity (defined as the distance of a

term from the root of the ontology); terms which could be unam-

biguously mapped to tissues through axiomatic links to an anatom-

ical ontology (Golbreich et al., 2006, Kohler et al., 2013,

(Hoehndorfet al., 2010) or manual assignment. A total of 2922 dis-

tinct disease genes were found to be annotated as associated with

HPO diseases and were subsequently matched with selected pheno-

types. Phenotypes, where a frequency modifier for a disease is

denoted as ‘very rare’ or in the cases where the frequency modifier is

given as a percentage, <2% of all cases reported, were not con-

sidered. Finally, from the resulting data, 1000 disease-genes associ-

ations were selected at random for testing (Supplementary Data 1).

In order to ascertain how tissue selection affects prioritization

with GeneTiER, diseases with a distinct, localized phenotype were

categorized using Disease Ontology, using definitions which are des-

cendants of the term ‘disease of anatomical entity’ (DOID:7). 500

disease–gene associations were selected for testing (Supplementary

Data 2).

2.4 Implementation
The implementation is accessible through a web-based interface

(Fig. 1), which was constructed to HTML5 specification, utilizing

JavaScript throughout; JavaScript browser support is thus required.

Currently, the user may supply candidate disease genes in the follow-

ing formats: a single or multiple genomic region(s), specified by

chromosome and interval boundaries; a pre-filtered VCF file contain-

ing potentially deleterious variants (enforced by file size limit); a can-

didate gene list in a delimited format, accepting several commonly

used delimiter types. The gene list can be composed of Ensembl

(Flicek et al., 2014), Entrez (Maglott et al., 2011) or Refseq (Pruitt

et al., 2014) accession numbers, HGNC-approved gene names

(Gray et al., 2013); common aliases or any combination of thereof

may be used as input. GeneTIER performs automatic conversions be-

tween human genes and their mouse orthologs, as well as optionally

resolving ambiguous input gene aliases and identifiers based on mul-

tiple criteria. Up to 100 top results can be viewed directly in the

browser and the entire analysis can be downloaded as a text file.

GeneTIER is freely available at http://dna.leeds.ac.uk/GeneTIER/.

3 Results

The algorithm used by GeneTIER assumes that a disease gene’s expres-

sion tends to be significantly higher in affected tissues compared with

unaffected tissue. To test the generality of this assumption, we retrieved

expression values from our database for all genes in our training set

(see Section 2) and performed a two-sample Kolmogorov–Smirnov test

for non-normally distributed data, using an alternative hypothesis that

the cumulative frequency distribution function of modified scores from

unaffected tissues lies below that of modified scores from disease-

associated tissues. For RNA-sequencing data this resulted in statistic

D¼0.1517, with respective P-value<2.2e�16 and for microarray data

D¼0.1334, P-value<2.2e�16.

The performance of GeneTIER was assessed on a dataset com-

prised of 1000 known associations between disease genes and tissues

expected to be affected by each gene’s dysfunction. For each disease

gene, four sets of random genes were generated, comprising 50, 100,

200 and 500 genes. The disease genes were prioritized against the

genes in the randomly generated gene sets and the results analyzed

using ROC analysis. ROC curves provide a way to visualize and

compare classifier performance. Here, the candidate gene prioritiza-

tion algorithm can be viewed as a non-binary scoring classifier,

where disease-linked genes are positive instances and other candi-

dates are negatives. The values—or ranks—from the classifier out-

put can be converted into binary positive and negative scores using

cut-off thresholds. Thus, a confusion matrix can be calculated for

every integer rank cut-off value from which comparison metrics,

such as sensitivity and specificity values are derived. ROC graphs

allow the visualization of sensitivity versus 1-specificity. The line

running from the origin (0,0) to the maximum point of 1,1 (Y¼X),

which corresponds to an area under the curve (AUC) of 0.5, repre-

sents a performance that is no better than random predictions.

Points on a ROC curve that occur above this line represent an algo-

rithm with better than random classifier performance, while those

below the line have worse than random results, i.e. a bias toward

classifying positives as negatives. An algorithm with an AUC of 1

represents perfect classifier performance.

Figure 2 shows the resultant ROC graphs while Table 1 shows

the corresponding AUC scores. This analysis suggests that the algo-

rithm’s performance was inversely related to the number of non-

disease genes in the analysis, but does not decline in a linear manner.

In fact, the differences in performance when assessed on candidate

lists consisting of 100, 200 or 500 candidates are minor and do not

suggest that the maximum candidate gene list size will be encoun-

tered in typical gene mapping experiments. Overall, the obtained

AUC values are sufficiently high to suggest that disease genes are

typically ranked higher than the randomly selected genes in each

data set by this algorithm.

In order to illustrate the circumstances where our methodology

either failed or succeeded, we used a case study of the global

Tissue-specific gene expression profiles 3
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expression patterns for genes implicated in retinitis pigmentosa

(OMIM:610282), a degenerative eye disease causing severe vision

impairment. Figure 3 shows the expression profiles across multiple

normal tissues of five disease genes known to underlie retinitis pig-

mentosa, while Tables 2 and 3 show the summary of the mean ranks

obtained using our method. The genes PRPF3 and PRPF31 show dis-

tinct, tissue-specific expression in eye tissues with negligible expres-

sion in non-ocular tissue; disease genes with similar expression

profiles are ranked very highly by our methodology. While PRPF6 is

also highly expressed in eye tissues, unlike PRPF3 and PRPF31 its

expression is not limited to ocular tissues, resulting in a reduced, but

still strongly suggestive ranking. ROM1 is expressed in a number of

non-ocular tissues as well as in corneal epithelial cells but still

ranked highly. This was in spite of its lower expression in corneal

epithelial cells than that of the PRPF genes and comparable expres-

sion in adipose tissue. Unsurprisingly, in view of its ubiquitously

low expression levels, the methodology failed to identify PR1.

In order to ascertain whether our method is more appropriate

for certain disease types, we analyzed how well GeneTiER performs

across a range of tissues. Supplementary Figure S1 highlights that

GeneTiER can accurately prioritize genes across most tissue catego-

ries, recognizing endocrine and integumentary system-specific genes

Fig. 1. Overview of GeneTIER implementation. The web-based interface allows the user to supply candidate disease genes to prioritize and to select affected tis-

sues. Top prioritization results are returned in a tabular form and are available to visualize and compare using an interactive chart. Full results are available for

download

Fig. 2. ROC curve showing classifier performance on different size input

generated using disease genes from the benchmarking dataset (see

Section 2)
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particularly well, with 73 and 76% of disease genes, respectively,

ranked in the top 10. However, genes in the sensory category, com-

prising mostly eye-related disorders, ranked poorly.

The eye is a complex organ with many specialized tissue types.

While the GeneTiER database contains expression data from cor-

neal epithelial cells, stromal cells and murine lens, these do not en-

compass all the diverse cell types present in the eye. Consequently,

diseases of the eye that do not affect these tissues will not be cor-

rectly prioritized by our approach. Conversely, diseases affecting vi-

sion can be neurodegenerative in nature, in which case the causative

Table 1. AUC scores for classifier performance

when assessed using 1000 known disease

genes

Random gene

sample size

Area under the

ROC curve

50 0.83

100 0.80

200 0.81

500 0.78

Fig. 3. Expression profiles of PRPF3, PRPF31, PRPF6, ROM11 and RP1 genes, associated with retinitis pigmentosa (OMIM:610282) across a selection of tissues,

RNA sequencing data

Tissue-specific gene expression profiles 5
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gene may not have a function in the eye.Finally, we have considered

which data type—RNA-Seq or microarray—enabled more accurate

prioritization results. We considered all diseases where both RNA-

Seq and microarray data were available for all the identified affected

tissue types. Supplementary Figure S2 shows the ROC curves ob-

tained when the dataset was prioritized together with 100 random

genes. The difference in performance between RNA-Seq and micro-

array data is minimal, with RNA-sequencing data giving better re-

sults (ROC 0.80 versus 0.78), but slightly worse than the combined

score approach (ROC 0.81).This is in concordance with a recent

study by Wang et al. (2014), who found that while more differen-

tially expressed genes identified by RNA-sequencing than micro-

array studies could be verified by qPCR, the gain was mostly from

the improved quantification of low abundance transcripts.

Furthermore, while sequencing data do provide a small improve-

ment over microarray data in prioritization, this is offset by a more

limited public availability of sequencing datasets. There are cur-

rently 41124 microarray datasets deposited in Array Express data-

base in contrast to only 5745 RNA-sequencing experiments

(accessed 01/03/2014).

4 Discussion

While a number of methods have been previously employed for the

prioritization of candidate disease genes, none are universally ap-

plicable. These methods tend to rely heavily on prior knowledge

about the disease, phenotype and/or genes, making them unsuitable

systems for classifying novel and/or poorly characterized genes. The

best performing methods have been shown to rely on a variety of in-

formation sources to compensate for inadequacies in knowledge in

any single domain. However, there is value to be found in

approaches which distance themselves entirely from the ‘guilt-by-

association’ principle used by these methods, which have an inherent

bias toward well characterized genes.

The wide range of open access gene expression data can serve to

overcome the limitations of prior knowledge-based approaches by

substituting gene- or disease-specific information with tissue-specific

experimental data. However, implementations of this approach

often exhibit certain limitations. Some implementations prioritize

candidate disease genes based on co-expression with genes already

known to be associated with the disease in question. This requires

the user to supply ‘seed’ genes, thus making the assumption that pre-

existing knowledge about the disease is either available or relevant

to the particular disease phenotype. This may not be the case; for ex-

ample, OMIM currently contains several thousand disease entries

for which no contributing genes are yet known.

Conversely, a number of network-based methods prioritize genes

under the assumption that a disease gene will exist in a local net-

work of genes which are highly differentially expressed between af-

fected and unaffected tissues. However, while this type of approach

can be successful in disease-specific studies, it is difficult to general-

ize for wider use, due to its reliance on differential expression data-

sets between disease and control tissue samples. Some

implementations overcome these difficulties by requesting the user

to supply their own data. However, this can be seen as a contradic-

tion to the major aim of computational candidate prioritization

which is to reduce the experimental burden on a researcher, rather

than requiring the user to perform further studies. In this study, we

present a novel application for candidate disease gene prioritization

that aims to address the shortcomings discussed above. GeneTiER

does not require the user to have any prior knowledge of the disease,

other than the ability to unambiguously identify affected tissues.

The application has been specifically designed to require only min-

imal user input, and takes care of conversions between a variety of

commonly used gene identifiers and between human/mouse

orthologs.

We have taken advantage of both microarray expression and

RNA sequencing data available in the public domain to create an ex-

tensive tissue-specific expression database that can support a wide

variety of gene prioritization queries. Organs are made up of many

functionally diverse tissue cell types and this can be reflected in the

experimental data. Therefore, we have striven to collate data from

multiple, distinctive datasets, to enable the user to make tissue cell

type-specific queries which are not supported by many of the popu-

lar databases.

Many popular gene prioritization methods that rely on prior

knowledge about a disease use either text-mining approaches or

Gene Ontology annotations to score candidates based on relevance

to query. Currently, there are still over a thousand human genes

with no available GO annotations and many more with ‘shallow’

annotations. While this presents a problem for disease gene infer-

ence by similarity, the method described here would not be any less

applicable. For example, at the time of writing, no Gene Ontology

annotations have yet been ascribed to the human CDR1 gene,

known to contribute to paraneoplastic cerebellar degeneration

Table 2. Mean ranks and standard deviations of five case-study genes shown in Fig. 3

Gene PR1 ROM1 PRPF6 PRPF31 PRPF3

Input

size

Mean

rank

Standard

deviation

Mean

rank

Standard

deviation

Mean

rank

Standard

deviation

Mean

rank

Standard

deviation

Mean

rank

Standard

deviation

50 34.7 11.03 8.16 11.7 8.8 4.2 2.9 1.78 5.4 3.01

100 66.03 8.9 17.07 6.38 22.7 5.53 4.13 2.21 7.1 2.54

200 172.07 5.75 53.87 6.47 28.33 3.20 20.3 3.91 28.0 4.08

500 288.11 13.33 67.4 10.03 140.65 15.07 39.24 4.45 41.65 6.51

Each gene was ranked 30 times against a set of 50, 100, 200 and 500 randomly generated genes

Table 3. Mean reciprocal ranks of five case-study genes assessed

against a set with 50, 100, 200 and 500 randomly generated genes;

30 replicates

Mean reciprocal rank

Input size PR1 ROM1 PRPF6 PRPF31 PRPF3

50 0.78 0.09 0.09 0.08 0.08

100 0.66 0.17 0.23 0.04 0.07

200 0.86 0.27 0.14 0.10 0.14

500 0.58 0.13 0.28 0.08 0.08
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(OMIM:302650). This gene shows localized expression in brain tis-

sues, in particular in the cerebellum, and as such is scored highly by

our method, whereas approaches reliant on prior knowledge are

likely to fail. However, direct performance comparisons between

gene prioritization tools are difficult—without cross-validation, any

prioritization on known disease genes is meaningless, and to the best

of our knowledge, no web gene prioritization application provides a

performance assessment mode.

While we have shown that GeneTiER is capable of accurate dis-

ease gene prioritization through ROC analysis (with AUC values of

up to 0.83), it should be noted that the disease gene is rarely ranked

first in the output. This ranking should therefore be used as a guide to

the order in which candidate genes should be analyzed further. Even

so, it must be noted that not all disease gene expression patterns con-

form to the assumptions underlying our model. For example, some

disease genes show universally high or low gene expression across all

tissues (see RP1 in Fig. 3). Indeed, aberrant activation of genes which

are normally repressed can result in a disease phenotype, as is the case

in many cancers. However, in order to detect these patterns, the differ-

ential expression change must be observed between the normal and af-

fected states. While including differential expression data from

normal and affected patients would no doubt improve GeneTiER per-

formance, public availability of such data is mostly limited to a small

number of well-studied diseases and therefore would enhance the re-

sults for only a small proportion of cases.

Furthermore, as Oellrich and Smedley (2014) note in their ana-

lysis, the site of gene expression and the visible phenotype do not al-

ways coincide. Consequently, the limitations of this method must be

understood and taken into consideration when examining the final

gene rankings. This is especially true where the link between tissue

and phenotype may not be immediately obvious. For example, con-

genital dysfibrinogenemia (OMIM:616004) is a blood clotting dis-

order caused by defective fibrinogen genes FGB, FGG and FGA.

Circulating factors affecting blood clotting are synthesized by hep-

atocytes, and indeed, our data show that fibrinogen genes are highly

and exclusively expressed in the liver (Supplementary Fig. S3a).

However, GeneTiER would not identity these disease genes if the

user failed to take this into account and selected blood, rather than

liver, as the affected tissue.

Narcolepsy-cataplexy (ORPHANET:2073) is a sleep disorder

with multiple causative genes identified. GeneTiER scores a number

of these highly, for example MOG and ZNF365, due to localized

expression in parts of the brain (Supplementary Fig. S3b). However,

the disease can have an autoimmune component and in some pa-

tients the phenotype has been attributed to the loss of neurons in the

hypothalamus due to autoimmune attacks. Consequently, our meth-

odology fails to identify histocompatibility genes HLA-DQB1 and

HLA-DRB1 as causative genes for the disease and may find other

phenotypes arising from heterogeneous causes challenging

(Supplementary Fig. 3c).

Similarly, GeneTiER will not be able to identify disease genes

that are expressed exclusively in tissues not present in our dataset.

Similarly, diseases caused by genes that are expressed in response to

either an environmental stimulus or within a short development

time frame will not perform well if the appropriately stimulated tis-

sue is absent from our dataset.

In spite of these challenges, there are numerous cases where the

observed phenotype correlates with the site of expression exceed-

ingly well. For example, renal tubular dysgenesis (OMIM:267430)

is characterized by a congenital abnormality of the kidneys, with

low amniotic fluid during pregnancy. The protein associated with

the disease, REN, is produced mostly by juxtaglomerular cells of the

kidney. The data in GeneTiER database agree with this, showing

elevated expression in the kidney, as well as a secondary major site

of expression in the placenta (Supplementary Fig. S3d).

Our testing indicates that our gene prioritization method is cap-

able of meaningful candidate gene prioritization and performs

strongly in a substantial proportion of cases tested. GeneTiER aims

to highlight genes with tissue-specific expression patterns to the user

from among other candidate genes in their dataset, and as such will

perform best for diseases with distinct, localized phenotypes.

Nevertheless, a broad selection of tissues allows for scoring of com-

plex phenotypes affecting any combination of tissues. We believe

GeneTiER offers great utility value to the research community and

can effectively supplement the in silico toolbox of any researcher.
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