54 research outputs found

    Mitoxantrone pleurodesis to palliate malignant pleural effusion secondary to ovarian cancer

    Get PDF
    BACKGROUND: Advanced ovarian cancer is the leading non-breast gynaecologic cause of malignant pleural effusion. Aim of this study was to assess the efficacy of mitoxantrone sclerotherapy as a palliative treatment of malignant pleural effusions due to ovarian cancer. METHODS: Sixty women with known ovarian cancer and malignant recurrent symptomatic pleural effusion were treated with chest tube drainage followed by intrapleural mitoxantrone sclerotherapy. Survival, complications and response to pleurodesis were recorded. The data are expressed as the mean ± SEM and the median. RESULTS: The mean age of the entire group was 64 ± 11,24 years. The mean interval between diagnosis of ovarian cancer and presentation of the effusion was 10 ± 2,1 months. Eighteen patients (30%) had pleural effusion as the first evidence of recurrence. The mean volume of effusion drained was 1050 ± 105 ml and chest tube was removed within 4 days in 75% of patients. There were no deaths related to the procedure. Side effects of chemical pleurodesis included fever (37–38,5°C) chest pain, nausea and vomiting. At 30 days among 60 treated effusions, there was an 88% overall response rate, including 41 complete responses and 12 partial responses. At 60 days the overall response was 80% (38 complete responses and 10 partial responses). The mean survival of the entire population was 7,5 ± 1,2 months. CONCLUSIONS: Mitoxantrone is effective in the treatment of malignant pleural effusion secondary to ovarian cancer without causing significant local or systemic toxicity

    Longitudinal evaluation the pulmonary function of the pre and postoperative periods in the coronary artery bypass graft surgery of patients treated with a physiotherapy protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The treatment of coronary artery disease (CAD) seeks to reduce or prevent its complications and decrease morbidity and mortality. For certain subgroups of patients, coronary artery bypass graft surgery (CABG) may accomplish these goals. The objective of this study was to assess the pulmonary function in the CABG postoperative period of patients treated with a physiotherapy protocol.</p> <p>Methods</p> <p>Forty-two volunteers with an average age of 63 ± 2 years were included and separated into three groups: healthy volunteers (n = 09), patients with CAD (n = 9) and patients who underwent CABG (n = 20). Patients from the CABG group received preoperative and postoperative evaluations on days 3, 6, 15 and 30. Patients from the CAD group had evaluations on days 1 and 30 of the study, and the healthy volunteers were evaluated on day 1. Pulmonary function was evaluated by measuring forced vital capacity (FVC), maximum expiratory pressure (MEP) and Maximum inspiratory pressure (MIP).</p> <p>Results</p> <p>After CABG, there was a significant decrease in pulmonary function (p < 0.05), which was the worst on postoperative day 3 and returned to the preoperative baseline on postoperative day 30.</p> <p>Conclusion</p> <p>Pulmonary function decreased after CABG. Pulmonary function was the worst on postoperative day 3 and began to improve on postoperative day 15. Pulmonary function returned to the preoperative baseline on postoperative day 30.</p

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Interferometric Observations of Rapidly Rotating Stars

    Full text link
    Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar evolution, and exoplanet detection. As newly advanced techniques and instrumentation mature, this topic in astronomy is poised to greatly expand in depth and influence.Comment: Accepted for publication in A&AR

    Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease

    Get PDF
    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g. ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore