704 research outputs found

    Cue-Reactors: Individual Differences in Cue-Induced Craving after Food or Smoking Abstinence

    Get PDF
    Background: Pavlovian conditioning plays a critical role in both drug addiction and binge eating. Recent animal research suggests that certain individuals are highly sensitive to conditioned cues, whether they signal food or drugs. Are certain humans also more reactive to both food and drug cues? Methods: We examined cue-induced craving for both cigarettes and food, in the same individuals (n = 15 adult smokers). Subjects viewed smoking-related or food-related images after abstaining from either smoking or eating. Results: Certain individuals reported strong cue-induced craving after both smoking and food cues. That is, subjects who reported strong cue-induced craving for cigarettes also rated stronger cue-induced food craving. Conclusions: In humans, like in nonhumans, there may be a ‘‘cue-reactive’ ’ phenotype, consisting of individuals who are highly sensitive to conditioned stimuli. This finding extends recent reports from nonhuman studies. Further understanding this subgroup of smokers may allow clinicians to individually tailor therapies for smoking cessation

    Shared Principles of Ethics for Infant and Young Child Nutrition in the Developing World

    Get PDF
    Abstract Background The defining event in the area of infant feeding is the aggressive marketing of infant formula in the developing world by transnational companies in the 1970s. This practice shattered the trust of the global health community in the private sector, culminated in a global boycott of Nestle products and has extended to distrust of all commercial efforts to improve infant and young child nutrition. The lack of trust is a key barrier along the critical path to optimal infant and young child nutrition in the developing world. Discussion To begin to bridge this gap in trust, we developed a set of shared principles based on the following ideals: Integrity; Solidarity; Justice; Equality; Partnership, cooperation, coordination, and communication; Responsible Activity; Sustainability; Transparency; Private enterprise and scale-up; and Fair trading and consumer choice. We hope these principles can serve as a platform on which various parties in the in the infant and young child nutrition arena, can begin a process of authentic trust-building that will ultimately result in coordinated efforts amongst parties. Summary A set of shared principles of ethics for infant and young child nutrition in the developing world could catalyze the scale-up of low cost, high quality, complementary foods for infants and young children, and eventually contribute to the eradication of infant and child malnutrition in the developing world

    Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis

    Get PDF
    Correction to Martin et al. available at: Genes & Development 30 (19): 2158 (http://genesdev.cshlp.org/content/31/9/953.full.pdf+html).Compaction of chromosomes is essential for accurate segregation of the genome duringmitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here,we report that biallelic mutations inNCAPD2,NCAPH, orNCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size.This work was supported by funding from the Medical Research Council, the Lister Institute for Preventative Medicine, and the European Research Council (ERC; 281847 to A.P.J.); a Biotechnology and Biological Sciences Research Council grant (BB/ K017632/1 to P.V); a Sir Henry Dale Fellowship (grant 102560/ Z/13/Z to A.J.W.); Medical Research Scotland (to L.S.B.); the Potentials Foundation (to C.A.W.); and the Indian Council of Medical Research (BMS 54/2/2013 to S.R.P). The Deciphering Developmental Disorders Study presents independent research commissioned by the Health Innovation Challenge Fund (grant no. HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant no. WT098051). The views expressed here are those of the authors and not necessarily those of the Wellcome Trust or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83) granted by the Cambridge South Research Ethics Committee, and GEN/ 284/12 granted by the Republic of Ireland. We acknowledge the support of the National Institute for Health Research through the Comprehensive Clinical Research Network

    Small molecule chemokine mimetics suggest a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3.

    Get PDF
    BACKGROUND AND PURPOSE: The chemokine receptor CXCR3 directs migration of T-cells in response to the ligands CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC. Both ligands and receptors are implicated in the pathogenesis of inflammatory disorders, including atherosclerosis and rheumatoid arthritis. Here, we describe the molecular mechanism by which two synthetic small molecule agonists activate CXCR3. EXPERIMENTAL APPROACH: As both small molecules are basic, we hypothesized that they formed electrostatic interactions with acidic residues within CXCR3. Nine point mutants of CXCR3 were generated in which an acidic residue was mutated to its amide counterpart. Following transient expression, the ability of the constructs to bind and signal in response to natural and synthetic ligands was examined. KEY RESULTS: The CXCR3 mutants D112N, D195N and E196Q were efficiently expressed and responsive in chemotaxis assays to CXCL11 but not to CXCL10 or to either of the synthetic agonists, confirmed with radioligand binding assays. Molecular modelling of both CXCL10 and CXCR3 suggests that the small molecule agonists mimic a region of the '30s loop' (residues 30-40 of CXCL10) which interacts with the intrahelical CXCR3 residue D112, leading to receptor activation. D195 and E196 are located in the second extracellular loop and form putative intramolecular salt bridges required for a CXCR3 conformation that recognizes CXCL10. In contrast, CXCL11 recognition by CXCR3 is largely independent of these residues. CONCLUSION AND IMPLICATIONS: We provide here a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. Such findings may have implications for the design of CXCR3 antagonists

    Emerging Need for Vaccination against Hepatitis A Virus in Patients with Chronic Liver Disease in Korea

    Get PDF
    Vaccination against hepatitis A virus (HAV) is recommended for patients with chronic liver disease (CLD), but this has been deemed unnecessary in Korea since the immunity against HAV was almost universal in adults. However, this practice has never been reevaluated with respect to the changing incidence of adult acute hepatitis A. We retrospectively reviewed the medical records of 278 patients with acute hepatitis A diagnosed from January 1995 to November 2005 and prospectively tested 419 consecutive CLD patients from July to December 2005 for the presence of IgG anti-HAV. The number of patients with acute hepatitis A has markedly increased recently, and the proportion of adult patients older than 30 yr has been growing from 15.2% during 1995-1999, to 28.4% during 2000-2005 (p=0.019). Among 419 CLD patients, the seroprevalences of IgG anti-HAV were 23.1% for those between 26 and 30 yr, 64% between 31 and 35 yr, and 85.0% between 36 and 40 yr. These data demonstrate that immunity against HAV is no more universal in adult and substantial proportion of adult CLD patients are now at risk of HAV infection in Korea. Therefore, further study on seeking proper strategy of active immunization against HAV is warranted in these populations

    The Role of Early Life Experience and Species Differences in Alcohol Intake in Microtine Rodents

    Get PDF
    Social relationships have important effects on alcohol drinking. There are conflicting reports, however, about whether early-life family structure plays an important role in moderating alcohol use in humans. We have previously modeled social facilitation of alcohol drinking in peers in socially monogamous prairie voles. We have also modeled the effects of family structure on the development of adult social and emotional behaviors. Here we assessed whether alcohol intake would differ in prairie voles reared by both parents compared to those reared by a single mother. We also assessed whether meadow voles, a closely related species that do not form lasting reproductive partnerships, would differ in alcohol drinking or in the effect of social influence on drinking. Prairie voles were reared either bi-parentally (BP) or by a single mother (SM). BP- and SM-reared adult prairie voles and BP-reared adult meadow voles were given limited access to a choice between alcohol (10%) and water over four days and assessed for drinking behavior in social and non-social drinking environments. While alcohol preference was not different between species, meadow voles drank significantly lower doses than prairie voles. Meadow voles also had significantly higher blood ethanol concentrations than prairie voles after receiving the same dose, suggesting differences in ethanol metabolism. Both species, regardless of rearing condition, consumed more alcohol in the social drinking condition than the non-social condition. Early life family structure did not significantly affect any measure. Greater drinking in the social condition indicates that alcohol intake is influenced similarly in both species by the presence of a peer. While the ability of prairie voles to model humans may be limited, the lack of differences in alcohol drinking in BP- and SM-reared prairie voles lends biological support to human studies demonstrating no effect of single-parenting on alcohol abuse

    Meta-analysis of genome-wide linkage studies of asthma and related traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and allergy are complex multifactorial disorders, with both genetic and environmental components determining disease expression. The use of molecular genetics holds great promise for the identification of novel drug targets for the treatment of asthma and allergy. Genome-wide linkage studies have identified a number of potential disease susceptibility loci but replication remains inconsistent. The aim of the current study was to complete a meta-analysis of data from genome-wide linkage studies of asthma and related phenotypes and provide inferences about the consistency of results and to identify novel regions for future gene discovery.</p> <p>Methods</p> <p>The rank based genome-scan meta-analysis (GSMA) method was used to combine linkage data for asthma and related traits; bronchial hyper-responsiveness (BHR), allergen positive skin prick test (SPT) and total serum Immunoglobulin E (IgE) from nine Caucasian asthma populations.</p> <p>Results</p> <p>Significant evidence for susceptibility loci was identified for quantitative traits including; BHR (989 pedigrees, n = 4,294) 2p12-q22.1, 6p22.3-p21.1 and 11q24.1-qter, allergen SPT (1,093 pedigrees, n = 4,746) 3p22.1-q22.1, 17p12-q24.3 and total IgE (729 pedigrees, n = 3,224) 5q11.2-q14.3 and 6pter-p22.3. Analysis of the asthma phenotype (1,267 pedigrees, n = 5,832) did not identify any region showing genome-wide significance.</p> <p>Conclusion</p> <p>This study represents the first linkage meta-analysis to determine the relative contribution of chromosomal regions to the risk of developing asthma and atopy. Several significant results were obtained for quantitative traits but not for asthma confirming the increased phenotype and genetic heterogeneity in asthma. These analyses support the contribution of regions that contain previously identified asthma susceptibility genes and provide the first evidence for susceptibility loci on 5q11.2-q14.3 and 11q24.1-qter.</p

    Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells

    Get PDF
    Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N1-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis

    Effect of Cytoskeletal Disruption on Mechanotransduction of Hydrostatic Pressure by C3H10T1/2 Murine Fibroblasts

    Get PDF
    Cyclic hydrostatic pressure of physiological magnitude (< 10 MPa) stimulates chondrogenic differentiation of mesenchymal stem cells, but mechanotransduction mechanisms are not well understood. It was hypothesized that an intact cytoskeleton would be required for uninhibited mechanotransduction of hydrostatic pressure. Therefore we examined the effects of drugs which selectively interfere with actin and tubulin polymerization on pressure-induced upregulation of aggrecan and col2a1 (type II collagen) mRNA expression. C3H10T1/2 cells were cultured as pellets in either 4µM cytochalasin D or 4µM nocodazole and subjected to 3 days of cyclic hydrostatic compression (1 Hz, 5 MPa, 2 h per day). Phalloidin staining and indirect immunostaining with anti α-tubulin antibody confirmed disruption of microfilament and microtubule assemblies, respectively. Real time RT-PCR revealed that both drugs substantially lowered the basal level of aggrecan and col2a1 mRNA, but that neither drug prevented a pressure-stimulated increase in gene expression relative to the altered basal state. Thus upregulation of macromolecular gene expression by cyclic hydrostatic pressure did not require a completely intact cytoskeleton
    corecore