540 research outputs found

    Escape rate and Hausdorff measure for entire functions

    Full text link
    The escaping set of an entire function is the set of points that tend to infinity under iteration. We consider subsets of the escaping set defined in terms of escape rates and obtain upper and lower bounds for the Hausdorff measure of these sets with respect to certain gauge functions.Comment: 24 pages; some errors corrected, proof of Theorem 2 shortene

    Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach (Rutilus rutilus) Living in English Rivers

    Get PDF
    UK Natural Environmental Research Council (NERC; NE/K004263/1); NERC Biomolecular Analysis Facility for funding (NBAF866); Medical Research Council Clinical Infrastructure award (MR/M008924/1); Wellcome Trust Institutional Strategic Support Fund (WT097835MF); Wellcome Trust Multi User Equipment Award (WT101650MA); BBSRC LOLA award (BB/ K003240/1)

    Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila: Oomycete)

    Get PDF
    Analysis of an organism’s genetic diversity requires a method that gives reliable, reproducible results. Microsatellites are robust markers, however, detection of allele sizes can be difficult with some systems as well as consistency among laboratories. In this study, our two laboratories used 219 isolates of Phytophthora sojae to compare three microsatellite methods. Two capillary electrophoresis methods, the Applied Biosystems 3730 Genetic Analyzer and the CEQ 8000 Genetic Analysis system, detected an average of 2.4-fold more alleles compared to gel electrophoresis with a mean of 8.8 and 3.6 alleles per locus using capillary and gel methods, respectively. The two capillary methods were comparable, although allele sizes differed consistently by an average of 3.2 bp across isolates. Differences between capillary methods could be overcome if reference standard DNA genotypes are shared between collaborating laboratories

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean

    Get PDF
    The perception of Phytophthora sojae avirulence (Avr) gene products by corresponding soybean resistance (Rps) gene products causes effector triggered immunity. Past studies have shown that the Avr3a and Avr5 genes of P. sojae are genetically linked, and the Avr3a gene encoding a secreted RXLR effector protein was recently identified. We now provide evidence that Avr3a and Avr5 are allelic. Genetic mapping data from F2 progeny indicates that Avr3a and Avr5 co-segregate, and haplotype analysis of P. sojae strain collections reveal sequence and transcriptional polymorphisms that are consistent with a single genetic locus encoding Avr3a/5. Transformation of P. sojae and transient expression in soybean were performed to test how Avr3a/5 alleles interact with soybean Rps3a and Rps5. Over-expression of Avr3a/5 in a P. sojae strain that is normally virulent on Rps3a and Rps5 results in avirulence to Rps3a and Rps5; whereas silencing of Avr3a/5 causes gain of virulence in a P. sojae strain that is normally avirulent on Rps3a and Rps5 soybean lines. Transient expression and co-bombardment with a reporter gene confirms that Avr3a/5 triggers cell death in Rps5 soybean leaves in an appropriate allele-specific manner. Sequence analysis of the Avr3a/5 gene identifies crucial residues in the effector domain that distinguish recognition by Rps3a and Rps5

    “It ain’t (just) what you do, it’s (also) the way that you do it”: The role of Procedural Justice in the Implementation of Anti-social Behaviour Interventions with Young People

    Get PDF
    This paper provides an analysis of the introduction and implementation of hybrid powers to regulate anti-social behaviour, during a period of regulatory ‘hyperactivity’ in the UK. It explores the role of procedural justice by drawing on findings from a study conducted in England which investigated the implementation practices and experiences of young people and parents. These are considered against seven characteristics of procedural justice: voice; voluntariness; respectful treatment; parsimony; accuracy of information; fairness; and neutrality. The paper analyses the manner in which principles of voluntary cooperation can be corrupted by threats of punitive sanctions. It questions the extent to which the use of such hybrid orders fosters perceptions of legitimacy and supports the capacity of young people to avoid criminalisation

    New discoveries in the transmission biology of sleeping sickness parasites: applying the basics

    Get PDF
    The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available

    The role of agonist and antagonist muscles in explaining isometric knee extension torque variation with hip joint angle.

    Get PDF
    PURPOSE: The biarticular rectus femoris (RF), operating on the ascending limb of the force-length curve, produces more force at longer lengths. However, experimental studies consistently report higher knee extension torque when supine (longer RF length) compared to seated (shorter RF length). Incomplete activation in the supine position has been proposed as the reason for this discrepancy, but differences in antagonistic co-activation could also be responsible due to altered hamstrings length. We examined the role of agonist and antagonist muscles in explaining the isometric knee extension torque variation with changes in hip joint angle. METHOD: Maximum voluntary isometric knee extension torque (joint MVC) was recorded in seated and supine positions from nine healthy males (30.2 ± 7.7 years). Antagonistic torque was estimated using EMG and added to the respective joint MVC (corrected MVC). Submaximal tetanic stimulation quadriceps torque was also recorded. RESULT: Joint MVC was not different between supine (245 ± 71.8 Nm) and seated (241 ± 69.8 Nm) positions and neither was corrected MVC (257 ± 77.7 and 267 ± 87.0 Nm, respectively). Antagonistic torque was higher when seated (26 ± 20.4 Nm) than when supine (12 ± 7.4 Nm). Tetanic torque was higher when supine (111 ± 31.9 Nm) than when seated (99 ± 27.5 Nm). CONCLUSION: Antagonistic co-activation differences between hip positions do not account for the reduced MVC in the supine position. Rather, reduced voluntary knee extensor muscle activation in that position is the major reason for the lower MVC torque when RF is lengthened (hip extended). These findings can assist standardising muscle function assessment and improving musculoskeletal modelling applications
    corecore