35 research outputs found

    Control of a wrist joint motion simulator: a phantom study

    Get PDF
    The presence of muscle redundancy and co-activation of agonist-antagonist pairs in vivo makes the optimization of the load distribution between muscles in physiologic joint simulators vital. This optimization is usually achieved by employing different control strategies based on position and/or force feedback. A muscle activated physiologic wrist simulator was developed to test and iteratively refine such control strategies on a functional replica of a human arm. Motions of the wrist were recreated by applying tensile loads using electromechanical actuators. Load cells were used to monitor the force applied by each muscle and an optical motion capture system was used to track joint angles of the wrist in real-time. Four control strategies were evaluated based on their kinematic error, repeatability and ability to vary co-contraction. With kinematic errors of less than 1.5°, the ability to vary co-contraction, and without the need for predefined antagonistic forces or muscle force ratios, novel control strategies – hybrid control and cascade control – were preferred over standard control strategies – position control and force control. Muscle forces obtained from hybrid and cascade control corresponded well with in vivo EMG data and muscle force data from other wrist simulators in the literature. The decoupling of the wrist axes combined with the robustness of the control strategies resulted in complex motions, like dart thrower’s motion and circumduction, being accurate and repeatable. Thus, two novel strategies with repeatable kinematics and physiologically relevant muscle forces are introduced for the control of joint simulators

    Image intensifier distortion correction for fluoroscopic RSA: the need for independent accuracy assessment

    No full text
    Fluoroscopic images suffer from multiple modes of image distortion. Therefore, the purpose of this study was to compare the effects of correction using a range of two‐dimensional polynomials and a global approach. The primary measure of interest was the average error in the distances between four beads of an accuracy phantom, as measured using RSA. Secondary measures of interest were the root mean squared errors of the fit of the chosen polynomial to the grid of beads used for correction, and the errors in the corrected distances between the points of the grid in a second position. Based upon the two‐dimensional measures, a polynomial of order three in the axis of correction and two in the perpendicular axis was preferred. However, based upon the RSA reconstruction, a polynomial of order three in the axis of correction and one in the perpendicular axis was preferred. The use of a calibration frame for these three‐dimensional applications most likely tempers the effects of distortion. This study suggests that distortion correction should be validated for each of its applications with an independent “gold standard” phantom

    The contribution of the posterolateral capsule to elbow joint stability: a cadaveric biomechanical investigation.

    Get PDF
    BACKGROUND: Elbow posterolateral rotatory instability occurs after an injury to the lateral collateral ligament complex (LCLC) in isolation or in association with an osteochondral fracture of the posterolateral margin of the capitellum (Osborne-Cotterill lesion [OCL]). The contribution to elbow stability of the posterolateral capsule, attached to this lesion, is unknown. This study quantified the displacement of the radial head on simulated posterior draw with sectioning of the posterior capsule (a simulated OCL) or LCLC. METHODS: Biomechanical testing of the elbow was performed in 8 upper limb cadavers. With the elbow 0°, 30°, 60°, and 90° degrees of flexion, posterior displacement of the radius was measured at increments of a load of 5 N up to 50 N. A simulated OCL and LCLC injury was then performed. RESULTS: A simulated OCL results in significantly more displacement of the radial head compared with the intact elbow at 30° to 60° of elbow flexion. LCLC resection confers significantly more displacement. An OCL after LCLC resection does not create further displacement. CONCLUSIONS: The degree of radial head displacement is greater after a simulated OCL at 30° to 60° of flexion compared with the intact elbow with the same load but not as great as seen with sectioning of the LCLC. This study suggests that the posterior capsule attaching to the back of the capitellum is important to elbow stability and should be identified as the Osborne-Cotterill ligament. Clinical studies are required to determine the importance of these biomechanical findings

    Clinical measurement of dart throwing motion of the wrist: variability, accuracy and correction

    Get PDF
    Despite being functionally important, dart throwing motion is difficult to assess accurately through goniometry. The objectives of this study were to describe a method for reliably quantifying the dart throwing motion using goniometric measurements within a healthy population. Wrist kinematics of 24 healthy participants were assessed using goniometry and optical motion tracking. Three wrist angles were measured at the starting and ending points of the motion: flexion-extension, radial-ulnar deviation and dart throwing motion angle. The orientation of the dart throwing motionplane relative to the flexion-extension axis ranged between 28° and 57° among the tested population. Plane orientations derived from optical motion capture differed from those calculated through goniometry by 25°. An equation to correct the estimation of the plane from goniometry measurements was derived. This was applied and differences in the orientation of the plane were reduced to non-significant levels, enabling dart throwing motion to be measured using goniometry alone

    Identifying tasks to elicit maximum voluntary contraction in the muscles of the forearm

    Get PDF
    Maximum voluntary contractions (MVCs) are often used for the normalisation of electromyography data to enable comparison of signal patterns within and between study participants. Recommendations regarding the types of tasks that are needed to collect MVCs for the muscles of the forearm have been made, specifically advocating the use of resisted moment tasks to get better estimates of forearm MVCs. However, a protocol detailing which specific tasks to employ has yet to be published. Furthermore, the effects of limb dominance on the collection of MVCs have not been considered previously. Muscle activity was monitored while 23 participants performed nine isometric, resisted tasks. The tasks that are likely to elicit MVC in the flexor carpi ulnaris, flexor carpi radialis, flexor digitorum superficialis, extensor carpi ulnaris, extensor carpi radialis, extensor digitorum communis, and pronator teres were identified. Thus, targeted protocols can be designed to mitigate against fatigue. Hand dominance had limited effect, with differences being found only in the finger flexors and extensors (p< 0.03). Thus, use of the contralateral flexor digitorum superficialis and extensor digitorum communis muscles to obtain baselines for activation levels and patterns may not be appropriate

    The effects of wrist motion and hand orientation on muscle forces: a physiologic wrist simulator study

    Get PDF
    Although the orientations of the hand and forearm vary for different wrist rehabilitation protocols, their effect on muscle forces has not been quantified. Physiologic simulators enable a biomechanical evaluation of the joint by recreating functional motions in cadaveric specimens. Control strategies used to actuate joints in 5 physiologic simulators usually employ position or force feedback alone to achieve optimum load distribution across the muscles. After successful tests on a phantom limb, unique combinations of position and force feedback – hybrid control and cascade control – were used to simulate multiple cyclic wrist motions of flexion-extension, radioulnar deviation, dart thrower’s motion, and 10 circumduction using six muscles in ten cadaveric specimens. Low kinematic errors and coefficients of variation of muscle forces were observed for planar and complex wrist motions using both novel control strategies. The effect of gravity was most pronounced when the hand was in the horizontal orientation, resulting in higher extensor forces (p<0.017) and higher out-of-plane kinematic errors (p<0.007), as compared to the vertically 15 upward or downward orientations. Muscle forces were also affected by the direction of rotation during circumduction. The peak force of flexor carpi radialis was higher in clockwise circumduction (p=0.017), while that of flexor carpi ulnaris was higher in anticlockwise circumduction (p=0.013). Thus, the physiologic wrist simulator accurately replicated cyclic planar and complex motions in cadaveric specimens. Moreover, the dependence of muscle 20 forces on the hand orientation and the direction of circumduction could be vital in the specification of such parameters during wrist rehabilitation

    Design and Evaluation of Magnetic Hall Effect Tactile Sensors for Use in Sensorized Splints

    Get PDF
    Splinting techniques are widely used in medicine to inhibit the movement of arthritic joints. Studies into the effectiveness of splinting as a method of pain reduction have generally yielded positive results, however, no significant difference has been found in clinical outcomes between splinting types. Tactile sensing has shown great promise for the integration into splinting devices and may offer further information into applied forces to find the most effective methods of splinting. Hall effect-based tactile sensors are of particular interest in this application owing to their low-cost, small size, and high robustness. One complexity of the sensors is the relationship between the elastomer geometry and the measurement range. This paper investigates the design parameters of Hall effect tactile sensors for use in hand splinting. Finite element simulations are used to locate the areas in which sensitivity is high in order to optimise the deflection range of the sensor. Further simulations then investigate the mechanical response and force ranges of the elastomer layer under loading which are validated with experimental data. A 4 mm radius, 3 mm-thick sensor is identified as meeting defined sensing requirements for range and sensitivity. A prototype sensor is produced which exhibits a pressure range of 45 kPa normal and 6 kPa shear. A proof of principle prototype demonstrates how this can be integrated to form an instrumented splint with multi-axis sensing capability and has the potential to inform clinical practice for improved splinting

    Ligamentous constraint of the first carpometacarpal joint

    Get PDF
    To examine the role of the ligaments in maintaining stability of the first carpometacarpal (CMC) joint, a sequential ligament sectioning study of sixteen specimens was performed. While a small compressive force was maintained, loads were applied to displace each specimen in four directions – volar, dorsal, radial, and ulnar. Translations of the specimen in both dorsal-volar and radial-ulnar axes were measured. Initially, the tests were conducted with the specimen intact. These tests were then repeated following sectioning of the CMC anterior oblique ligament (AOL), ulnar collateral ligament (UCL), intermetacarpal ligament (IML) and dorsal radial ligament (DRL). The first CMC joint translation was increased in the absence of IML and DRL (p < 0.05). Both IML and DRL were important in constraining the first CMC joint translation against external applied loads. Potential applications of these findings include the treatment of joint hypermobility and the reduction or delay of onset or progression of first CMC joint osteoarthritis
    corecore