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Abstract 

Maximum voluntary contractions (MVCs) are often used for the normalisation of 

electromyography data to enable comparison of signal patterns within and between study 

participants. Recommendations regarding the types of tasks that are needed to collect MVCs 

for the muscles of the forearm have been made, specifically advocating the use of resisted 

moment tasks to get better estimates of forearm MVCs. However, a protocol detailing which 

specific tasks to employ has yet to be published. Furthermore, the effects of limb dominance 

on the collection of MVCs have not been considered previously. Muscle activity was 

monitored while 23 participants performed nine isometric, resisted tasks. The tasks that are 

likely to elicit MVC in the flexor carpi ulnaris, flexor carpi radialis, flexor digitorum superficialis, 

extensor carpi ulnaris, extensor carpi radialis, extensor digitorum communis, and pronator 

teres were identified. Thus, targeted protocols can be designed to mitigate against fatigue. 

Hand dominance had limited effect, with differences being found only in the finger flexors 

and extensors (p< 0.03). Thus, use of the contralateral flexor digitorum superficialis and 

extensor digitorum communis muscles to obtain baselines for activation levels and patterns 

may not be appropriate. 
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1. Introduction 

Electromyography (EMG) is widely employed for the detection and analysis of muscle activity 

in the upper limb. To mitigate against sensitivities of the technique and to allow for both inter- 

and intra-subject data comparisons, EMG signals are normalised. Maximum voluntary 

contraction (MVC) signals have been recommended for normalisation (Burden, 2010). 5 

Clinically, MVCs for the forearm muscles that act on the wrist are collected during an isometric 

power grip task (Mogk and Keir, 2003). Ngo and Wells, (2016), however, found that a greater 

signal could be elicited for the muscles with a series of resisted moment exertions. However, 

they did not comment on which task was most likely to elicit MVC in a given muscle. To date, 

a protocol to obtain MVCs for the muscles of the forearm has not been published. Also of 10 

note, is that studies investigating upper limb EMG generally have focused on one limb. Either 

the dominant or non-dominant, right or left limb of each participant is commonly tested. 

However, this practice, may be inappropriate due to differences in hand strength (Farthing et 

al., 2005), anthropometric measures (Kaplan, 2016), muscle architecture (Fugyl-Meyer et al., 

1982), and control strategies (Adam et al., 1998) between dominant and non-dominant 15 

hands. 

The objective of this study was to build on the work of Ngo and Wells, (2016) by identifying 

tasks most likely to elicit MVC in seven muscles of the forearm for both dominant and non-

dominant arms. The aim was to allow future researchers and clinicians to build robust, 

efficient protocols tailored to the muscles they are investigating. Employing fewer tasks 20 

reduces the time requirements of the protocol and reduces the risk of fatigue setting in and 

affecting the results of consequent tasks. 
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2. Materials and methods 

2.1 Experimental design 

Fourteen surface EMG sensors (Delsys Trigno, Natick, MA, USA) (De Luca et al., 2012) were 25 

used to monitor the activity of the flexor carpi ulnaris (FCU), flexor carpi radialis (FCR), flexor 

digitorum superficialis (FDS), extensor carpi ulnaris (ECU), extensor carpi radialis (ECR), 

extensor digitorum communis (EDC), and pronator teres (PT) muscles in the dominant and 

non-dominant arms of 23 participants, 13 female (1.67 ± 0.07 m; 62.0 ± 9.2 kg) and 10 male 

(1.76 ± 0.07 m; 76.4 ± 12.9 kg). The protocol for the study was adapted from the study 30 

conducted by Ngo and Wells (2016) and the number of participants was determined from a 

power analysis of the mean muscle activities in their study. Each participant performed nine 

isometric resisted tasks that were found to generate the highest activity in the muscles 

considered in this study (Figure 1). Participants were given a demonstration and the 

opportunity to briefly practice each task submaximally. Each task was performed once and 35 

lasted 5 seconds; participants were given encouragement throughout to exert as much as 

possible. Multiple tasks were required, as the tasks asked participants to generate forces in 

single direction, and only the muscles anatomically able to contribute to each task were likely 

to produce MVC during that task (Buchanan, 1995; Hoozemans and van Dieën, 2005). 

2.2 Data processing 40 

The EMG data were processed in MATLAB (MathsWork, Natick, MA, USA) using custom 

written code. Raw EMG datasets had their DC offset removed, were rectified, and were low-

pass filtered with a cut-off frequency of 13 Hz (Robertson and Dowling, 2003). For each 

participant, the task that elicited the highest activity in each muscle was noted and tallied. 

The signal for each muscle was then normalised to its peak value from across all nine tasks. 45 
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For each task, the total normalised muscle activity was summed, to provide insight into co-

contraction levels. 

2.3 Data analysis  

The median activity for each muscle in the nine tasks was used to identify the task most likely 

to elicit MVC. The Wilcoxon signed rank test was used to test for differences between the 50 

muscle activity of the dominant and non-dominant limbs. The Friedman test was used to 

compare muscle activity across tasks with the Tukey-Kramer test for multiple comparisons 

being used for post-hoc analysis. Significance for the two tests was defined as p < 0.05. 

 

3. Results 55 

The task most likely to elicit MVC for each muscle can be inferred from the percentage of 

people that produced MVC in the dominant and non-dominant limbs when performing each 

task (Figure 2). Plotting boxplots of the activity of each muscle in the tasks further elucidates 

which task is most likely to elicit maximal activity in a muscle. The ECR is an example of a 

muscle that clearly exerted MVC in one task (Figure 3). The ECR, ECU, and PT each had one 60 

task that was most likely to elicit MVC; the median activity for these muscles was 100% in the 

pull, ulnar pull, and the pronation tasks, respectively. The FCR produced its highest median 

activity in the pronation task, the FCU did the same in the grip task, and the EDC was most 

activated during the finger extension task, but these medians were all submaximal. The non-

dominant FDS was most active in the pronation task and was similarly active in grip and 65 

pronation tasks for the dominant limb. 

Differences were found between the dominant and non-dominant EDC and FDS in the finger 

flexion task, the EDC and FCU in the finger extension task, and the FDS in the grip, ulnar pull, 
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and pronation tasks (p < 0.03). There were no differences in the levels of co-contraction 

between the dominant and non-dominant limbs (Figure 4). 70 

4. Discussion 

The data presented show which tasks are most likely to elicit MVC for a given muscle in both 

the dominant and non-dominant limbs. Like (Ngo and Wells, 2016), this study found that no 

one task elicited MVC for every muscle, nor did a task produce MVC in 100% of the population 

for any given muscle. The finger muscles tested were the only ones that showed differences 75 

in their activities between dominant and non-dominant limbs, the FDS being different in the 

greatest number of tasks. It has been found that the dominant hand employs different control 

strategies to the non-dominant hand to complete the same task, especially in grip (Adam et 

al., 1998; Noguchi et al., 2009). This could explain the difference in finger muscle activity given 

that grip was involved in seven of the nine tasks. It is hypothesised that differences in muscle 80 

coordination affect muscle activation, with the non-dominant limb being less efficient, thus 

requiring higher activity to accomplish the same task (Bagesteiro and Sainburg, 2002). Of the 

seven instances when there was a difference between the activity in the dominant and non-

dominant limbs, the non-dominant limb was more active in five. Considering the co-

contraction measures, although no statistical difference was found for any of the tasks, the 85 

p-value for the finger flexion task was 0.08, suggesting a trend towards increased activation 

in the non-dominant limb.  

A limitation of this study is that it is was not possible to verify if participants were performing 

the tasks correctly. Whilst the tasks are designed to target muscles are anatomically able to 

contribute to the instructed motion, the participants may also have exerted force in other 90 

directions. For example, the ulnar pull task is meant to ensure the participants activate the 
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ECU and FCU by rotating the wrist ulnarly, but they could also potentially exert force in the 

dorsal direction by extending the wrist. Furthermore, it is difficult to ensure that a participant 

performs MVC. A task may target the muscles and the participant may perform it correctly 

but unfamiliarity with the motion, such as extending the fingers, may prevent them from 95 

performing MVC. Though efforts were made to mitigate against this, i.e. giving 

encouragement to the participant and providing a practice round for each task, these 

limitations persist whenever recording MVCs. 

A further limitation of the study was the performance of single trial of each task. Performing 

repetitions would have helped determine if the tasks which generated MVC in each 100 

participant were repeatable and elucidate the effects, if any, of fatigue. A further study should 

be performed to investigate the repeatability of MVCs and determine the effects of fatigue 

on their collection. 

5. Conclusion 

The objective of the study was to build on the study of (Ngo and Wells, 2016) by identifying which 105 

tasks were most likely to elicit MVC in seven muscles of the forearm in both the dominant and non-

dominant arms. From the data collected, a targeted protocol can be designed for the ECU, EDC, ECR, 

FCU, FDS, FCR, and/or PT.  This allows for studies to be task efficient, mitigating against fatigue, and 

can help with optimising sensor placement by using appropriate tasks to identify the muscles. 

Furthermore, when collecting MVCs for the fingers, dominance should be considered, and it may be 110 

inappropriate to use the contralateral limb as a baseline in cases of pathology. 
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Figures 

 

Figure 1: The nine tasks performed to capture the maximum voluntary contractions for the 

flexor carpi ulnaris, flexor carpi radialis, flexor digitorum superficialis, extensor carpi ulnaris, 

extensor carpi radialis, extensor digitorum communis, and pronator teres muscles. 160 
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Figure 2: The percentage of people that generated maximum voluntary contraction for the 

extensor digitorum communis (EDC), extensor carpi radialis (ECR), extensor carpi ulnaris 

(ECU), flexor digitorum superficialis (FDS), flexor carpi radialis (FCR, flexor carpi ulnaris 

(FCU), and pronator teres (PT) muscles in the dominant (left bar) and non-dominant (right 165 

bar) limbs for all nine tasks. 
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Figure 3: The muscle activity expressed as a percent of maximum voluntary contraction 

(MVC) of the (A) dominant and (B) non-dominant extensor carpi radialis for all the 

population in the nine tasks. The extensor carpi radialis is shown as it was a muscle that 170 

clearly exerted MVC in one task. 
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Figure 4: The total muscle activity as a percent of maximum voluntary contraction (MVC) for 

the dominant (left bar) and non-dominant (right bar) limbs for all nine tasks. 


