45 research outputs found

    Variational water-wave model with accurate dispersion and vertical vorticity

    Get PDF
    A new water-wave model has been derived which is based on variational techniques and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite-element profile with a small number of elements (say), leading to a framework for efficient modeling of the interaction of steepening and breaking waves near the shore with a large-scale horizontal flow. The equations are derived from a constrained variational formulation which leads to conservation laws for energy, mass, momentum and vertical vorticity. It is shown that the potential-flow water-wave equations and the shallow-water equations are recovered in the relevant limits. Approximate shock relations are provided, which can be used in numerical schemes to model breaking waves

    Effectiveness and safety of opicapone in Parkinson's disease patients with motor fluctuations: The OPTIPARK open-label study

    Get PDF
    BACKGROUND: The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. METHODS: OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinson’s disease and motor fluctuations were treated with opicapone 50 mg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinician’s Global Impression of Change (CGI-C) after 3 months. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinson’s Disease Rating Scale (UPDRS), Parkinson’s Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). RESULTS: Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3 months of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3 months, respectively (full analysis set). At 6 months, for UK subgroup only (n = 95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3 months showed statistically significant improvements in activities of daily living during OFF (mean ± SD change from baseline: − 3.0 ± 4.6, p < 0.0001) and motor scores during ON (− 4.6 ± 8.1, p < 0.0001). The mean ± SD improvements of − 3.4 ± 12.8 points for PDQ-8 and -6.8 ± 19.7 points for NMSS were statistically significant versus baseline (both p < 0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. CONCLUSIONS: Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. TRIAL REGISTRATION: Registered in July 2016 at clinicaltrials.gov (NCT02847442)

    A direct localization of a fast radio burst and its host

    Full text link
    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities orders of magnitude larger than any other kind of known short-duration radio transient. Thus far, all FRBs have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the sub-arcsecond localization of FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts themselves. Our precise localization reveals that FRB 121102 originates within 100 mas of a faint 180 uJy persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (25th magnitude) optical counterpart. The flux density of the persistent radio source varies by tens of percent on day timescales, and very long baseline radio interferometry yields an angular size less than 1.7 mas. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. [Truncated] If other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct sub-arcsecond localizations of FRBs may be the only way to provide reliable associations.Comment: Nature, published online on 4 Jan 2017, DOI: 10.1038/nature2079

    Significant sink of ocean eddy-energy near western boundaries

    No full text
    Ocean eddies generated through instability of the mean flow are a vital component of the energy budget of the global ocean1-3. In equilibrium, the sources and sinks of eddy energy have to be balanced. However, where and how eddy energy is removed remains uncertain3,4. Ocean eddies are observed to propagate westwards at speeds similar to the phase speeds of classical Rossby waves5, but what happens to the eddies when they encounter the western boundary is unclear. Here we use a simple reduced-gravity model along with satellite altimetry data to show that the western boundary acts as a "graveyardg" for the westward-propagating ocean eddies. We estimate a convergence of eddy energy near the western boundary of approximately 0.1-0.3 TW, poleward of 10°in latitude. This energy is most probably scattered into high-wavenumber vertical modes, resulting in energy dissipation and diapycnal mixing. If confirmed, this eddy-energy sink will have important implications for the ocean circulation. © 2010 Macmillan Publishers Limited. All rights reserved
    corecore