24 research outputs found

    Thermofield Dynamics for Twisted Poincare-Invariant Field Theories: Wick Theorem and S-matrix

    Full text link
    Poincare invariant quantum field theories can be formulated on non-commutative planes if the statistics of fields is twisted. This is equivalent to state that the coproduct on the Poincare group is suitably twisted. In the present work we present a twisted Poincare invariant quantum field theory at finite temperature. For that we use the formalism of Thermofield Dynamics (TFD). This TFD formalism is extend to incorporate interacting fields. This is a non trivial step, since the separation in positive and negative frequency terms is no longer valid in TFD. In particular, we prove the validity of Wick's theorem for twisted scalar quantum field at finite temperature.Comment: v1: 25 pages, no figure v2: references added; typos corrected; typo in title correcte

    Galilean Covariance and the Gravitational Field

    Full text link
    The paper is concerned with the development of a gravitational field theory having locally a covariant version of the Galilei group. We show that this Galilean gravity can be used to study the advance of perihelion of a planet, following in parallel with the result of the (relativistic) theory of general relativity in the post-Newtonian approximation.Comment: 6 pages, no figures. This paper was accepted for publication on International Journal of Modern Physics

    Noncommutative Thermofield Dynamics

    Full text link
    The real-time operator formalism for thermal quantum field theories, thermofield dynamics, is formulated in terms of a path-integral approach in non-commutative spaces. As an application, the two-point function for a thermal non-commutative λϕ4\lambda \phi^4 theory is derived at the one-loop level. The effect of temperature and the non-commutative parameter, competing with one another, is analyzed.Comment: 13 pages; to be published in IJMP-A

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore