138 research outputs found

    Estimates of tropical bromoform emissions using an inversion method

    Get PDF
    Abstract. Bromine plays an important role in ozone chemistry in both the troposphere and stratosphere. When measured by mass, bromoform (CHBr3) is thought to be the largest organic source of bromine to the atmosphere. While seaweed and phytoplankton are known to be dominant sources, the size and the geographical distribution of CHBr3 emissions remains uncertain. Particularly little is known about emissions from the Maritime Continent, which have usually been assumed to be large, and which appear to be especially likely to reach the stratosphere. In this study we aim to reduce this uncertainty by combining the first multi-annual set of CHBr3 measurements from this region, and an inversion process, to investigate systematically the distribution and magnitude of CHBr3 emissions. The novelty of our approach lies in the application of the inversion method to CHBr3. We find that local measurements of a short-lived gas like CHBr3 can be used to constrain emissions from only a relatively small, sub-regional domain. We then obtain detailed estimates of CHBr3 emissions within this area, which appear to be relatively insensitive to the assumptions inherent in the inversion process. We extrapolate this information to produce estimated emissions for the entire tropics (defined as 20° S–20° N) of 225 Gg CHBr3 yr−1. The ocean in the area we base our extrapolations upon is typically somewhat shallower, and more biologically productive, than the tropical average. Despite this, our tropical estimate is lower than most other recent studies, and suggests that CHBr3 emissions in the coastline-rich Maritime Continent may not be stronger than emissions in other parts of the tropics. M. Ashfold thanks the Natural Environment Research Council (NERC) for a research studentship, and is grateful for support through the ERC ACCI project (project number 267760). N. Harris is supported by a NERC Advanced Research Fellowship. This work was supported through the EU SHIVA project, through the NERC OP3 project, and NERC grants NE/F020341/1 and NE/J006246/1. We also acknowledge the Department of Energy and Climate Change for their support in the development of InTEM (contract GA0201). For field site support we thank S.-M. Phang, A. A. Samah and M. S. M. Nadzir of Universiti Malaya, S. Ong and H. E. Ung of Global Satria, Maznorizan Mohamad, L. K. Peng and S. E. Yong of the Malaysian Meteorological Department, the Sabah Foundation, the Danum Valley Field Centre and the Royal Society. This paper constitutes publication no. 613 of the Royal Society South East Asia Rainforest Research Programme.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/979/2014/acp-14-979-2014.html

    Rapid transport of East Asian pollution to the deep tropics

    Get PDF
    Abstract. Anthropogenic emissions from East Asia have increased over recent decades, and under the prevailing westerly winds, these increases have led to changes in atmospheric composition as far afield as North America. Here we show that, during Northern Hemisphere (NH) winter, pollution originating in East Asia also directly affects atmospheric composition in the deep tropics. We present observations of marked intra-seasonal variability in the anthropogenic tracer perchloroethene (C2Cl4) collected at two locations in Borneo during the NH winter of 2008/09. We use the NAME trajectory model to show that the observed enhancements in C2Cl4 mixing ratio are caused by rapid meridional transport, in the form of "cold surges", from the relatively polluted East Asian land mass. In these events air masses can move across > 30° of latitude in 4 days. We then present data from the Monitoring Atmospheric Composition and Climate reanalysis which suggests that air masses high in C2Cl4 may also contain levels of the pollutants carbon monoxide and ozone that are approximately double the typical "background" levels in Borneo. Convection in Southeast Asia can be enhanced by cold surges, and further trajectory calculations indicate that the polluted air masses can subsequently be lifted to the tropical upper troposphere. This suggests a potentially important connection between mid-latitude pollution sources and the very low stratosphere. This work was supported by a NERC consortium grant to the OP3 team, by NCAS, by the European Commission through the SCOUT-O3 project (505390-GOCECF2004), though the ERC ACCI project, Project No 267760, and by NERC western Pacific grant number NE/F020341/1 and NERC CAST grant number NE/J006246/1. M. J. Ashfold thanks NERC for a research studentship. A. D. Robinson acknowledges NERC for their support through small grant project NE/D008085/1. N. R. P. Harris is supported by a NERC Advanced Research Fellowship. We thank the Sabah Foundation, Danum Valley Field Centre and the Royal Society (Glen Reynolds) for field site support. This is paper number X of the Royal Society’s South East Asian Rainforest Research Programme. We are grateful for use of data provided by the MACC-II project, funded by the European Union under the 7th Framework Programme. We also acknowledge use of the NAME atmospheric dispersion model and associated NWP meteorological data sets made available to us by the Met O ce. We acknowledge the significant storage resources and analysis facilities made available to us on JASMIN by STFC CEDA along with the corresponding support teams.This is the published version. It first appeared at: http://www.atmos-chem-phys-discuss.net/14/30705/2014/acpd-14-30705-2014.html

    Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo

    Get PDF
    Abstract. Short-lived halocarbons are believed to have important sources in the tropics, where rapid vertical transport could provide a significant source to the stratosphere. In this study, quasi-continuous measurements of short-lived halocarbons are reported for two tropical sites in Sabah (Malaysian Borneo), one coastal and one inland (rainforest). We present the observations for C2Cl4, CHBr3, CH2Br2* (actually ~80% CH2Br2 and ~20% CHBrCl2) and CH3I from November 2008 to January 2010 made using our μDirac gas chromatographs with electron capture detection (GC-ECD). We focus on the first 15 months of observations, showing over one annual cycle for each compound and therefore adding significantly to the few limited-duration observational studies that have been conducted thus far in southeast Asia. The main feature in the C2Cl4 behaviour at both sites is its annual cycle, with the winter months being influenced by northerly flow with higher concentrations, typical of the Northern Hemisphere, and with the summer months influenced by southerly flow and lower concentrations representative of the Southern Hemisphere. No such clear annual cycle is seen for CHBr3, CH2Br2* or CH3I. The baseline values for CHBr3 and CH2Br2* are similar at the coastal (overall median: CHBr3 1.7 ppt, CH2Br2* 1.4 ppt) and inland sites (CHBr3 1.6 ppt, CH2Br2* 1.1 ppt), but periods with elevated values are seen at the coast (overall 95th percentile: CHBr3 4.4 ppt, CH2Br2ast 1.9 ppt), presumably resulting from the stronger influence of coastal emissions. Overall median bromine values from [CHBr3 × 3] + [CH2Br2* × 2] are 8.0 ppt at the coast and 6.8 ppt inland. The median values reported here are largely consistent with other limited tropical data and imply that southeast Asia generally is not, as has been suggested, a hot spot for emissions of these compounds. These baseline values are consistent with the most recent emissions found for southeast Asia using the p-TOMCAT (Toulouse Off-line Model of Chemistry And Transport) model. CH3I, which is only observed at the coastal site, is the shortest-lived compound measured in this study, and the observed atmospheric variations reflect this, with high variability throughout the study period. This work was supported by a NERC consortium grant to the OP3 team, by NCAS, by the European Commission through the SCOUT-O3 project (505390-GOCE-CF2004) and by NERC western Pacific grant number NE/F020341/1 and NERC CAST grant number NE/J006246/1. L. M. O’Brien and M. J. Ashfold thank NERC for research studentships. A. D. Robinson acknowledges NERC for their support through small grant project NE/D008085/1. N. R. P. Harris is supported by a NERC Advanced Research Fellowship. We thank the Sabah Foundation, Danum Valley Field Centre and the Royal Society (Glen Reynolds) for field site support. The research leading to these results has received funding from the European Union’s Seventh Framework Programme FP7/2007–2013 under grant agreement no. 226224 – SHIVA. We thank David Oram and Stephen Humphrey at UEA for their assistance in checking the calibration of our Aculife cylinder in May 2009. This is paper number 626 of the Royal Society’s South East Asian Rainforest Research Programme.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/8369/2014/acp-14-8369-2014.html

    Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09)

    Get PDF
    Abstract. Atmospheric concentrations of very short-lived species (VSLS) bromocarbons, including CHBr3, CH2Br2, CHCl2Br, CHClBr2, and CH2BrCl, were measured in the Strait of Malacca and the South China and Sulu–Sulawesi seas during a two-month research cruise in June–July 2009. The highest bromocarbon concentrations were found in the Strait of Malacca, with smaller enhancements in coastal regions of northern Borneo. CHBr3 was the most abundant bromocarbon, ranging from 5.2 pmol mol−1 in the Strait of Malacca to 0.94 pmol mol−1 over the open ocean. Other bromocarbons showed lower concentrations, in the range of 0.8–1.3 pmol mol−1 for CH2Br2, 0.1–0.5 pmol mol−1 for CHCl2Br, and 0.1–0.4 pmol mol−1 for CHClBr2. There was no significant correlation between bromocarbons and in situ chlorophyll a, but positive correlations with both MODIS and SeaWiFS satellite chlorophyll a. Together, the short-lived bromocarbons contribute an average of 8.9 pmol mol−1 (range 5.2–21.4 pmol mol−1) to tropospheric bromine loading, which is similar to that found in previous studies from global sampling networks (Montzka et al., 2011). Statistical tests showed strong Spearman correlations between brominated compounds, suggesting a common source. Log–log plots of CHBr3/CH2Br2 versus CHBr2Cl/CH2Br2 show that both chemical reactions and dilution into the background atmosphere contribute to the composition of these halocarbons at each sampling point. We have used the correlation to make a crude estimate of the regional emissions of CHBr3 and to derive a value of 32 Gg yr−1 for the Southeast (SE) Asian region (10° N–20° S, 90–150° E). Finally, we note that satellite-derived chlorophyll a (chl a) products do not always agree well with in situ measurements, particularly in coastal regions of high turbidity, meaning that satellite chl a may not always be a good proxy for marine productivity. We would like to thank MOSTI (Malaysian Ministry of Science, Technology and Innovation). for giving opportunities and financial support for the University of Malaya (UM) and Universiti Kebangsaan Malaysia to participate in this scientific cruise, and other Malaysian public universities and agencies who helped during sampling. The Malaysian Royal Navy is thanked for their help and assistance in all aspects of the cruise. We also thank the SHIVA European FP7 project (grant 226224), NERC, NERC-NCAS and the British Council, through a PMI2 grant, for their support. Neil Harris would like to thank NERC for his Research Fellowship; Emma Leedham and Matt Ashfold thank NERC for studentships, and Doreena Dominick, Lin Chin Yik, Fatimah Ahamad and Nur Ily Hamizah for their assistance and the Ministry of Higher Education Malaysia (KPT’s) ERGS grant ER025-2013A. Finally, we also would like to thank Universiti Kebangsaan Malaysia (UKM) for the ICONIC-2013-004 grant, MOSTI e-science grant 04-01-02-SF-0752 for Universiti Kebangsaan Malaysia (UKM), UKM GGPM-2013-080 and UKM DPP-2014-162 and GUP-2013-057 for financial support.This paper was originally published in Atmospheric Chemistry and Physics, 14, 8137-8148, doi:10.5194/acp-14-8137-2014, 201

    Determination of chlorinated solvents in industrial water and wastewater by DAI–GC–ECD

    Get PDF
    A very simple and quick analytical method, based on direct aqueous injection, for determination of halogenated solvents in refinery water and wastewater, is described. There is a need to determine halogenated solvents in refinery water streams, because they may originate from several processes. There is also a need to develop methods enabling VOX to be determined in samples containing oil fractions. The method described enables simultaneous determination of 26 compounds with low detection limits (sub-μg L−1) and excellent precision, especially for highly halogenated solvents. The matrix effects of four types of sample were evaluated—the method seemed to be relatively insensitive to variations in matrix composition. Deuterated 1,2-dichloroethane was used as internal standard and surrogate compound in quantitative analysis; application of isotopically labelled compounds is rarely reported when non-mass spectrometric detectors are used for analysis. Analysis of real samples showed that the most frequently detected compounds were dichloromethane and 1,2-dichloroethane

    Failure to obtain adequate anaesthesia associated with a bifid mandibular canal: a case report

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.The inferior alveolar nerve (IAN) block is the most common method for obtaining mandibular anaesthesia in dental practice but it is estimated to have a success rate of only 80 to 85 per cent. Causes of failure include problems with operator technique and anatomical variation between individuals. This case report involves a patient who received IAN blocks on two separate occasions that resulted in only partial anaesthesia of the ipsilateral side of the mandible. Radiographic assessment disclosed the presence of bifid mandibular canals that were present bilaterally and that may have affected the outcomes of the local anaesthetic procedures. Previous studies of bifid mandibular canals are reviewed and suggestions provided that should enable clinicians to differentially diagnose, and then manage, cases where IAN blocks result in inadequate mandibular anaesthesia.K Lew, G Townsen

    30 days wild: development and evaluation of a large-scale nature engagement campaign to improve well-being

    Get PDF
    There is a need to increase people’s engagement with and connection to nature, both for human well-being and the conservation of nature itself. In order to suggest ways for people to engage with nature and create a wider social context to normalise nature engagement, The Wildlife Trusts developed a mass engagement campaign, 30 Days Wild. The campaign asked people to engage with nature every day for a month. 12,400 people signed up for 30 Days Wild via an online sign-up with an estimated 18,500 taking part overall, resulting in an estimated 300,000 engagements with nature by participants. Samples of those taking part were found to have sustained increases in happiness, health, connection to nature and pro-nature behaviours. With the improvement in health being predicted by the improvement in happiness, this relationship was mediated by the change in connection to nature

    Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art

    Get PDF
    PublishedJournal ArticleEarth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate-carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process-and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes. © 2013 Author(s).This paper emerged from the GREENCYCLESII mini-conference “Evaluation of Earth system models using modern and palaeo-observations” held at Clare College, Cambridge, UK, in September 2012. We would like to thank the Marie Curie FP7 Research and Training Network GREENCYCLESII for providing funding which made this meeting possible. Research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 238366. The work of C. D. Jones was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). N. R. Edwards acknowledges support from FP7 grant no. 265170 (ERMITAGE). N. Vázquez Riveiros acknowledges support from the AXA Research Fund and the Newton Trust

    Identification of novel genetic risk factors of dilated cardiomyopathy: from canine to human

    Get PDF
    BACKGROUND: Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS: We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS: Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS: Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies
    corecore