360 research outputs found
Metabolic and hormonal studies of Type 1 (insulin-dependent) diabetic patients after successful pancreas and kidney transplantation
Long-term normalization of glucose metabolism is necessary to prevent or ameliorate diabetic complications. Although pancreatic grafting is able to restore normal blood glucose and glycated haemoglobin, the degree of normalization of the deranged diabetic metabolism after pancreas transplantation is still questionable. Consequently glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide responses to oral glucose and i.v. arginine were measured in 36 Type 1 (insulin-dependent) diabetic recipients of pancreas and kidney allografts and compared to ten healthy control subjects. Despite normal HbA1 (7.2±0.2%; normal <8%) glucose disposal was normal only in 44% and impaired in 56% of the graft recipients. Normalization of glucose tolerance was achieved at the expense of hyperinsulinaemia in 52% of the subjects. C-peptide and glucagon were normal, while pancreatic polypeptide was significantly higher in the graft recipients. Intravenous glucose tolerance (n=21) was normal in 67% and borderline in 23%. Biphasic insulin release was seen in patients with normal glucose tolerance. Glucose tolerance did not deteriorate up to 7 years post-transplant. In addition, stress hormone release (cortisol, growth hormone, prolactin, glucagon, catecholamines) to insulin-induced hypoglycaemia was examined in 20 graft recipients and compared to eight healthy subjects. Reduced blood glucose decline indicates insulin resistance, but glucose recovery was normal, despite markedly reduced catecholamine and glucagon release. These data demonstrate the effectiveness of pancreatic grafting in normalizing glucose metabolism, although hyperinsulinaemia and deranged counterregulatory hormone response are observed frequently
Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study.
PurposeOsteogenesis imperfecta (OI) predisposes people to recurrent fractures, bone deformities, and short stature. There is a lack of large-scale systematic studies that have investigated growth parameters in OI.MethodsUsing data from the Linked Clinical Research Centers, we compared height, growth velocity, weight, and body mass index (BMI) in 552 individuals with OI. Height, weight, and BMI were plotted on Centers for Disease Control and Prevention normative curves.ResultsIn children, the median z-scores for height in OI types I, III, and IV were -0.66, -6.91, and -2.79, respectively. Growth velocity was diminished in OI types III and IV. The median z-score for weight in children with OI type III was -4.55. The median z-scores for BMI in children with OI types I, III, and IV were 0.10, 0.91, and 0.67, respectively. Generalized linear model analyses demonstrated that the height z-score was positively correlated with the severity of the OI subtype (P < 0.001), age, bisphosphonate use, and rodding (P < 0.05).ConclusionFrom the largest cohort of individuals with OI, we provide median values for height, weight, and BMI z-scores that can aid the evaluation of overall growth in the clinic setting. This study is an important first step in the generation of OI-specific growth curves
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Pupil Size in Spider Eyes Is Linked to Post-Ecdysal Lens Growth
In this study we describe a distinctive pigment ring that appears in spider eyes after ecdysis and successively decreases in size in the days thereafter. Although pigment stops in spider eyes are well known, size variability is, to our knowledge, reported here for the first time. Representative species from three families (Ctenidae, Sparassidae and Lycosidae) are investigated and, for one of these species (Cupiennius salei, Ctenidae), the progressive increase in pupil diameter is monitored. In this species the pupil occupies only a fourth of the total projected lens surface after ecdysis and reaches its final size after approximately ten days. MicroCT images suggest that the decrease of the pigment ring is linked to the growth of the corneal lens after ecdysis. The pigment rings might improve vision in the immature eye by shielding light rays that would otherwise enter the eye via peripheral regions of the cornea, beside the growing crystalline lens
Peroxiredoxin 6 mediates Gαi protein-coupled receptor inactivation by cJun kinase
Inactivation of opioid receptors limits the therapeutic efficacy of morphine-like analgesics and mediates the long duration of kappa opioid antidepressants by an uncharacterized, arrestin-independent mechanism. Here we use an iterative, discovery-based proteomic approach to show that following opioid administration, peroxiredoxin 6 (PRDX6) is recruited to the opioid receptor complex by c-Jun N-terminal kinase (JNK) phosphorylation. PRDX6 activation generates reactive oxygen species via NADPH oxidase, reducing the palmitoylation of receptor-associated Gαi in a JNK-dependent manner. Selective inhibition of PRDX6 blocks Gαi depalmitoylation, prevents the enhanced receptor G-protein association and blocks acute analgesic tolerance to morphine and kappa opioid receptor inactivation in vivo. Opioid stimulation of JNK also inactivates dopamine D2 receptors in a PRDX6-dependent manner. We show that the loss of this lipid modification distorts the receptor G-protein association, thereby preventing agonist-induced guanine nucleotide exchange. These findings establish JNK-dependent PRDX6 recruitment and oxidation-induced Gαi depalmitoylation as an additional mechanism of Gαi-G-protein-coupled receptor inactivation.Opioid receptors are important modulators of nociceptive pain. Here the authors show that opioid receptor activation recruits peroxiredoxin 6 (PRDX6) to the receptor-Gαi complex by c-Jun N-terminal kinase, resulting in Gαi depalmitoylation and enhanced receptor-Gαi association
A Predator from East Africa that Chooses Malaria Vectors as Preferred Prey
BACKGROUND: All vectors of human malaria, a disease responsible for more than one million deaths per year, are female mosquitoes from the genus Anopheles. Evarcha culicivora is an East African jumping spider (Salticidae) that feeds indirectly on vertebrate blood by selecting blood-carrying female mosquitoes as preferred prey. METHODOLOGY/PRINCIPAL FINDINGS: By testing with motionless lures made from mounting dead insects in lifelike posture on cork discs, we show that E. culicivora selects Anopheles mosquitoes in preference to other mosquitoes and that this predator can identify Anopheles by static appearance alone. Tests using active (grooming) virtual mosquitoes rendered in 3-D animation show that Anopheles' characteristic resting posture is an important prey-choice cue for E. culicivora. Expression of the spider's preference for Anopheles varies with the spider's size, varies with its prior feeding condition and is independent of the spider gaining a blood meal. CONCLUSIONS/SIGNIFICANCE: This is the first experimental study to show that a predator of any type actively chooses Anopheles as preferred prey, suggesting that specialized predators having a role in the biological control of disease vectors is a realistic possibility
Pain in platin-induced neuropathies: A systematic review and meta-analysis
INTRODUCTION: Platin-induced peripheral neuropathy (PIPN) is a common cause of PN in cancer patients. The aim of this paper is to systematically review the current literature regarding PIPN, with a particular focus on epidemiological and clinical characteristics of painful PIPN, and to discuss relevant management strategies. METHODS: A systematic computer-based literature search was conducted on the PubMed database. RESULTS: This search strategy resulted in the identification of 353 articles. After the eligibility assessment, 282 articles were excluded. An additional 24 papers were identified by scanning the reference lists. In total, 95 papers met the inclusion criteria and were used for this review. The prevalence of neuropathic symptoms due to acute toxicity of oxaliplatin was estimated at 84.6%, whereas PN established after chemotherapy with platins was estimated at 74.9%. Specifically regarding pain, the reported prevalence of pain due to acute toxicity of oxaliplatin was estimated at 55.6%, whereas the reported prevalence of chronic peripheral neuropathic pain in PIPN was estimated at 49.2%. CONCLUSION: Peripheral neuropathy is a common complication in patients receiving platins and can be particularly painful. There is significant heterogeneity among studies regarding the method for diagnosing peripheral neuropathy. Nerve conduction studies are the gold standard and should be performed in patients receiving platins and complaining of neuropathic symptoms post-treatment
Emergent Dark Matter, Baryon, and Lepton Numbers
We present a new mechanism for transferring a pre-existing lepton or baryon
asymmetry to a dark matter asymmetry that relies on mass mixing which is
dynamically induced in the early universe. Such mixing can succeed with only
generic scales and operators and can give rise to distinctive relationships
between the asymmetries in the two sectors. The mixing eliminates the need for
the type of additional higher-dimensional operators that are inherent to many
current asymmetric dark matter models. We consider several implementations of
this idea. In one model, mass mixing is temporarily induced during a two-stage
electroweak phase transition in a two Higgs doublet model. In the other class
of models, mass mixing is induced by large field vacuum expectation values at
high temperatures - either moduli fields or even more generic kinetic terms.
Mass mixing models of this type can readily accommodate asymmetric dark matter
masses ranging from 1 GeV to 100 TeV and expand the scope of possible
relationships between the dark and visible sectors in such models.Comment: 36 pages, 5 figure
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections
- …
