102 research outputs found
Can modern infrared analyzers replace gas chromatography to measure anesthetic vapor concentrations?
<p>Abstract</p> <p>Background</p> <p>Gas chromatography (GC) has often been considered the most accurate method to measure the concentration of inhaled anesthetic vapors. However, infrared (IR) gas analysis has become the clinically preferred monitoring technique because it provides continuous data, is less expensive and more practical, and is readily available. We examined the accuracy of a modern IR analyzer (M-CAiOV compact gas IR analyzer (General Electric, Helsinki, Finland) by comparing its performance with GC.</p> <p>Methods</p> <p>To examine linearity, we analyzed 3 different concentrations of 3 different agents in O<sub>2</sub>: 0.3, 0.7, and 1.2% isoflurane; 0.5, 1, and 2% sevoflurane; and 1, 3, and 6% desflurane. To examine the effect of carrier gas composition, we prepared mixtures of 1% isoflurane, 1 or 2% sevoflurane, or 6% desflurane in 100% O<sub>2 </sub>(= O<sub>2 </sub>group); 30%O<sub>2</sub>+ 70%N<sub>2</sub>O (= N<sub>2</sub>O group), 28%O<sub>2 </sub>+ 66%N<sub>2</sub>O + 5%CO<sub>2 </sub>(= CO<sub>2 </sub>group), or air. To examine consistency between analyzers, four different M-CAiOV analyzers were tested.</p> <p>Results</p> <p>The IR analyzer response in O<sub>2 </sub>is linear over the concentration range studied: IR isoflurane % = -0.0256 + (1.006 * GC %), R = 0.998; IR sevoflurane % = -0.008 + (0.946 * GC %), R = 0.993; and IR desflurane % = 0.256 + (0.919 * GC %), R = 0.998. The deviation from GC calculated as (100*(IR-GC)/GC), in %) ranged from -11 to 11% for the medium and higher concentrations, and from -20 to +20% for the lowest concentrations. No carrier gas effect could be detected. Individual modules differed in their accuracy (p = 0.004), with differences between analyzers mounting up to 12% of the medium and highest concentrations and up to 25% of the lowest agent concentrations.</p> <p>Conclusion</p> <p>M-CAiOV compact gas IR analyzers are well compensated for carrier gas cross-sensitivity and are linear over the range of concentrations studied. IR and GC cannot be used interchangeably, because the deviations between GC and IR mount up to ± 20%, and because individual analyzers differ unpredictably in their performance.</p
Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States
The phenomena that emerge from the interaction of the stochastic opening and
closing of ion channels (channel noise) with the non-linear neural dynamics are
essential to our understanding of the operation of the nervous system. The
effects that channel noise can have on neural dynamics are generally studied
using numerical simulations of stochastic models. Algorithms based on discrete
Markov Chains (MC) seem to be the most reliable and trustworthy, but even
optimized algorithms come with a non-negligible computational cost. Diffusion
Approximation (DA) methods use Stochastic Differential Equations (SDE) to
approximate the behavior of a number of MCs, considerably speeding up
simulation times. However, model comparisons have suggested that DA methods did
not lead to the same results as in MC modeling in terms of channel noise
statistics and effects on excitability. Recently, it was shown that the
difference arose because MCs were modeled with coupled activation subunits,
while the DA was modeled using uncoupled activation subunits. Implementations
of DA with coupled subunits, in the context of a specific kinetic scheme,
yielded similar results to MC. However, it remained unclear how to generalize
these implementations to different kinetic schemes, or whether they were faster
than MC algorithms. Additionally, a steady state approximation was used for the
stochastic terms, which, as we show here, can introduce significant
inaccuracies. We derived the SDE explicitly for any given ion channel kinetic
scheme. The resulting generic equations were surprisingly simple and
interpretable - allowing an easy and efficient DA implementation. The algorithm
was tested in a voltage clamp simulation and in two different current clamp
simulations, yielding the same results as MC modeling. Also, the simulation
efficiency of this DA method demonstrated considerable superiority over MC
methods.Comment: 32 text pages, 10 figures, 1 supplementary text + figur
A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems
Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Autoregulation in resistance training : addressing the inconsistencies
Autoregulation is a process that is used to manipulate training based primarily on the measurement of an individual's performance or their perceived capability to perform. Despite being established as a training framework since the 1940s, there has been limited systematic research investigating its broad utility. Instead, researchers have focused on disparate practices that can be considered specific examples of the broader autoregulation training framework. A primary limitation of previous research includes inconsistent use of key terminology (e.g., adaptation, readiness, fatigue, and response) and associated ambiguity of how to implement different autoregulation strategies. Crucially, this ambiguity in terminology and failure to provide a holistic overview of autoregulation limits the synthesis of existing research findings and their dissemination to practitioners working in both performance and health contexts. Therefore, the purpose of the current review was threefold: first, we provide a broad overview of various autoregulation strategies and their development in both research and practice whilst highlighting the inconsistencies in definitions and terminology that currently exist. Second, we present an overarching conceptual framework that can be used to generate operational definitions and contextualise autoregulation within broader training theory. Finally, we show how previous definitions of autoregulation fit within the proposed framework and provide specific examples of how common practices may be viewed, highlighting their individual subtleties
Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: results from a scoping study
ABSTRACT: Background: Since mobility and social participation are key determinants of health and quality of life, it is important to identify factors associated with them. Although several investigations have been conducted on the neighborhood environment, mobility and social participation, there is no clear integration of the results. This study aimed to provide a comprehensive understanding regarding how the neighborhood environment is associated with mobility and social participation in older adults.Methods: A rigorous methodological scoping study framework was used to search nine databases from different fields with fifty-one keywords. Data were exhaustively analyzed, organized and synthesized according to the International Classification of Functioning, Disability and Health (ICF) by two research assistants following PRISMA guidelines, and results were validated with knowledge users.Results: The majority of the 50 selected articles report results of cross-sectional studies (29; 58 %), mainly conducted in the US (24; 48 %) or Canada (15; 30 %). Studies mostly focused on neighborhood environment associations with mobility (39; 78 %), social participation (19; 38 %), and occasionally both (11; 22 %). Neighborhood attributes considered were mainly 'Pro ducts and technology' (43; 86) and 'Services, systems and policies' (37; 74 %), but also 'Natural and human- made changes' (27; 54 %) and 'Support and relationships' (21; 42 %). Mobility and social participation were both positively associated with Proximity to resources and recreational facilities, Social support, Having a car or driver's license, Public transportation and Neighborhood security, and negatively associated with Poor user-friendliness of the walking environment and Neighborhood insecurity. Attributes of the neighborhood environment not covered by previous research on mobility and social participation mainly concerned 'Attitudes', and 'Services, systems and policies'.Conclusion: Results from this comprehensive synthesis of empirical studies on associations of the neighborhood environment with mobility and social participation will ultimately support best practices, decisions and the development of innovative inclusive public health interventions including clear guidelines for the creation of age-supportive environments. To foster mobility and social participation, these interventions must consider Proximity to resources and to recreational facilities, Social support, Transportation, Neighborhood security and User-friendliness of the walking environment. Future studies should include both mobility and social participation, and investigate how they are associated with 'Attitudes', and 'Services, systems and policies' in older adults, including disadvantaged older adults
Criteria for selecting implementation science theories and frameworks: results from an international survey
Abstract Background Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. Methods We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Results Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%), logical consistency/plausibility (56%), empirical support (53%), and description of a change process (54%). The criteria used by the fewest respondents included fecundity (10%), uniqueness (12%), and falsifiability (15%). Conclusions Implementation scientists use a large number of criteria to select theories, but there is little consensus on which are most important. Our results suggest that the selection of implementation theories is often haphazard or driven by convenience or prior exposure. Variation in approaches to selecting theory warn against prescriptive guidance for theory selection. Instead, implementation scientists may benefit from considering the criteria that we propose in this paper and using them to justify their theory selection. Future research should seek to refine the criteria for theory selection to promote more consistent and appropriate use of theory in implementation science
Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015:a systematic analysis for the Global Burden of Disease Study 2015
Background Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015.Methods We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores.Findings We generated 9.3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17.2 billion, 95% uncertainty interval [UI] 15.4-19.2 billion) and diarrhoeal diseases (2.39 billion, 2.30-2.50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2.36 billion (2.35-2.37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20-30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo.Interpretation Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available. Copyright (C) The Author(s). Published by Elsevier Ltd.</p
- …