981 research outputs found
Measurement of healing area using planimetry after applying low-intensity ultrasound to the skin of rats
CONTEXTUALIZAÇÃO: A planimetria é um método utilizado para avaliar a evolução da cicatrização de feridas. A planimetria computacional é um método ainda em experimentação, mas cujas vantagens têm sido demonstradas em várias investigações. OBJETIVOS: Avaliar os efeitos do ultra-som pulsado de baixa intensidade sobre a cicatrização de lesão cutânea produzida na região dorsal de ratos, por meio da planimetria computacional. MATERIAIS E MÉTODOS: Utilizou-se 60 ratos machos Wistar (peso médio de 300g) divididos em dois grupos com 30 animais cada, de acordo com o tratamento: 1) irradiação simulada (controle); 2) irradiação efetiva (Freqüência fundamental de 1,5MHz, freqüência de repetição de pulsos de 1KHz, largura de pulso de 200µs, intensidade de 30mW/cm² SATA, dez minutos de aplicação em dias alternados). Cada grupo foi subdividido em três grupos, de acordo com o período de irradiação ultra-sônica, de três, sete e 14 dias, respectivamente, e a cicatrização foi avaliada por meio da planimetria, um decalque da lesão sendo obtido em papel especial, digitalizado e medido ao computador por meio de um programa gráfico. Análise estatística pelo método não-paramétrico de Mann-Whitney. RESULTADOS: Houve aumento significante (p<0,05) da área cicatrizada no grupo 2 (141,88±18,50mm²) em relação ao grupo 1 (117,38±15,14mm²), no 14º dia. Não houve diferenças significantes entre os grupos nos demais períodos. CONCLUSÕES: O ultra-som pulsado de baixa intensidade estimula a cicatrização cutânea por segunda intenção em condições experimentais. A planimetria computacional mostrou-se um recurso de baixo custo, fácil manuseio e de aplicabilidade clínica.BACKGROUND: Planimetry is a method used to evaluate the progression of skin wound healing. Computerized planimetry is still an experimental method, but its advantages have been demonstrated in several investigations. OBJECTIVE: To evaluate the effects of low-intensity pulsed ultrasound on the healing of a skin lesion produced on the dorsal region of rats, by means of computerized planimetry. METHODS: Sixty male Wistar rats of mean weight 300g were used. They were divided into two groups according to the treatment applied: 1) simulated irradiation (control); 2) effective irradiation (fundamental frequency 1.5MHz, pulse repetition frequency 1KHz, pulse width 200µs, SATA intensity 30mW/cm² and application for ten minutes on alternate days). Each group was divided into three subgroups according to the length of time for which ultrasound irradiation was applied of three, seven and 14 days, respectively, and healing was evaluated by means of planimetry; a tracing of the wound was obtained on special paper and this was digitized and measured by means of a graphing software. Statistical analysis was performed using the Mann-Whitney non-parametric method. RESULTS: The healed area was significantly greater (p<0.05) in group 2 (141.88±18.50mm²) than in group 1 (117.38±15.14mm²) on the 14th day. There were no significant differences between the subgroups for the other experimental periods. CONCLUSIONS: Low-intensity pulsed ultrasound irradiation stimulated secondary skin healing under these experimental conditions. Computerized planimetry was shown to be a low cost method that was easy to use and present clinical applicability
The development of path integration: combining estimations of distance and heading
Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing
Differential impact of severe drought on infant mortality in two sympatric neotropical primates
Extreme climate events can have important consequences for the dynamics of natural populations, and severe droughts are predicted to become more common and intense due to climate change. We analysed infant mortality in relation to drought in two primate species (white-faced capuchins, Cebus capucinus imitator, and Geoffroy's spider monkeys, Ateles geoffroyi) in a tropical dry forest in northwestern Costa Rica. Our survival analyses combine several rare and valuable long-term datasets, including long-term primate life-history, landscape-scale fruit abundance, food-tree mortality, and climate conditions. Infant capuchins showed a threshold mortality response to drought, with exceptionally high mortality during a period of intense drought, but not during periods of moderate water shortage. By contrast, spider monkey females stopped reproducing during severe drought, and the mortality of infant spider monkeys peaked later during a period of low fruit abundance and high food-tree mortality linked to the drought. These divergent patterns implicate differing physiology, behaviour or associated factors in shaping species-specific drought responses. Our findings link predictions about the Earth's changing climate to environmental influences on primate mortality risk and thereby improve our understanding of how the increasing severity and frequency of droughts will affect the dynamics and conservation of wild primates
Leveraging Spatial Metadata in Machine Learning for Improved Objective Quantification of Geological Drill Core
Here we present a method for using the spatial x–y coordinate of an image cropped from the cylindrical surface of digital 3D drill core images and demonstrate how this spatial metadata can be used to improve unsupervised machine learning performance. This approach is applicable to any data set with known spatial context, however, here it is used to classify 400 m of drillcore imagery into 12 distinct classes reflecting the dominant rock types and alteration features in the core. We modified two unsupervised learning models to incorporate spatial metadata and an average improvement of 25% was achieved over equivalent models that did not utilize metadata. Our semi-supervised workflow involves unsupervised network training followed by semi-supervised clustering where a support vector machine uses a subset of M expert labeled images to assign a pseudolabel to the entire data set. Fine-tuning of the best performing model showed an f1 (macro average) of 90%, and its classifications were used to estimate bulk fresh and altered rock abundance downhole. Validation against the same information gathered manually by experts when the core was recovered during the Oman Drilling Project revealed that our automatically generated data sets have a significant positive correlation (Pearson's r of 0.65–0.72) to the expert generated equivalent, demonstrating that valuable geological information can be generated automatically for 400 m of core with only ∼24 hr of domain expert effort
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
- …