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Abstract18

Here we present a method for using the spatial x-y coordinate of an image cropped from19

the cylindrical surface of digital 3D drill core images and demonstrate how this spatial20

metadata can be used to improve unsupervised machine learning performance. This ap-21

proach is applicable to any dataset with known spatial context, however, here it is used22

to classify 400 m of drillcore imagery into 12 distinct classes reflecting the dominant rock23

types and alteration features in the core. We modified two unsupervised learning mod-24

els to incorporate spatial metadata and an average improvement of 25 % was achieved25

over equivalent models that did not utilize metadata. Our semi-supervised workflow in-26

volves unsupervised network training followed by semi-supervised clustering where a sup-27

port vector machine uses a subset of M expert labelled images to assign a pseudolabel28

to the entire dataset. Fine-tuning of the best performing model showed an f1 (macro av-29

erage) of 90 %, and its classifications were used to estimate bulk fresh and altered rock30

abundance downhole. Validation against the same information gathered manually by ex-31

perts when the core was recovered during the Oman Drilling Project revealed that our32

automatically generated datasets have a significant positive correlation (Pearson’s r of33

0.65-0.72) to the expert generated equivalent, demonstrating that valuable geological in-34

formation can be generated automatically for 400 m of core with only ∼24 hrs of domain35

expert effort.36

Plain Language Summary37

This work presents a novel method for using the spatial context of digital core im-38

ages to improve the descriptive accuracy of unsupervised machine learning algorithms.39

The addition of spatial metadata improves model performance by an average of 25 %,40

with the best performing model in this study achieving an accuracy score of 90 %. The41

output of this model was then used to estimate the amount of fresh and altered rock within42

a 400 m long drill core, which was shown to be of comparable quality to the same es-43

timations made by geologists on the cores themselves.44

1 Introduction45

Drilling into the Earth to recover cores for geological analysis is an essential tool46

that provides valuable insight into otherwise inaccessible environments, yielding datasets47

utilized for mining, infrastructure planning and reconstructing the history of the planet.48

The task of describing these cores falls to specialists who systematically work through49

the recovered material to produce a series of descriptive and quantitative logs (core-logging)50

as well as visual core descriptions (VCDs). The features documented may include, but51

are not limited to, changes in rock type, veins and alteration features, structural mea-52

surements, and variations in relative mineral abundance downhole. These tasks are time53

consuming and rely on subjective estimates of the abundance of key features within a54

core. Furthermore, human interpretation tends to overestimate the abundance of a given55

feature in a scene, causing estimates to vary widely between individuals (Olmstead et56

al., 2004; Finn et al., 2010) and objective automated methods could resolve this under-57

lying bias. In addition to VCDs, cores are digitally imaged, and in the case of scientific58

drilling, their physical properties are measured prior to detailed petrographic and geo-59

chemical analyses (Jarrard et al., 2003; Kelemen et al., 2020), but additional process-60

ing is needed to make these datasets machine readable, limiting their use in emerging61

machine learning applications. During drilling campaigns downhole wireline geophysi-62

cal logs of the borehole wall may also be collected, providing useful continuous datasets63

for comparing borehole features with recovered core material to compensate for incom-64

plete core recovery (Tominaga et al., 2009; Tominaga & Umino, 2010). Most attempts65

to automate the classification of rock-types downhole initially focused on applying ar-66

tificial neural networks (ANN) to one-dimensional borehole data (Tominaga et al., 2009;67
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Ma, 2011; Al-Mudhafar, 2017; J. He et al., 2019). However, using only numerical data68

has the limitation of providing less direct information about the rock when compared69

to core images (Chai et al., 2009; Thomas et al., 2011).70

Most recent efforts to automatically classify rock-types using images of drill core have71

utilized convolutional neural networks (CNN) as they are more suited to image analy-72

sis (LeCun et al., 1995). When training a CNN to classify images, there are three main73

types of machine learning; supervised, unsupervised and semi-supervised, which involves74

a combination of unsupervised learning followed by a less intensive supervised step (Camps-75

Valls et al., 2007). The initial ’learning’ stage of training is where a CNN determines which76

images it considers similar and dissimilar, however, additional steps are required to as-77

sign classifications or labels to the images. In supervised learning, each training image78

has been labelled to give the model a target output to work towards, however this re-79

quires significant effort on the part of the annotator. In contrast, unsupervised learn-80

ing does not involve any labelling effort as the network extracts salient information from81

each image, referred to as a latent representation, and clustering techniques allow group-82

ing of images based on these simplified representations. An expert then inspects these83

clusters and provides a label to each. When taking a semi-supervised approach, a sub-84

set of expert labelled images can be provided to an unsupervised model to allow it to85

both cluster and assign a label to all images. Images are labelled based on where their86

latent representations plot in the hyper-dimensional feature space relative to the expert87

labelled subset. To date, there have been numerous attempts to use neural networks to88

classify images of drill core, all of which have taken slightly different approaches.89

Zhang et al. (2017) used a supervised approach to train a CNN to classify a dataset of90

1500 2D grayscale borehole wall resistivity images into three texturally distinct sedimen-91

tary rock types (sandstone, shale and conglomerate). Their number of training images92

was class imbalanced with an order of magnitude more sandstone images used in an at-93

tempt to improve their model’s ability to identify potential hydrocarbon reservoirs. Sim-94

ilarly, Alzubaidi et al. (2021) used a supervised workflow to compare the performance95

of several CNN model architectures in identifying three sedimentary rock types in pho-96

tos of boxed core sections (box photos) with the ResNeXt-50 CNN architecture out-performing97

other networks. Their training dataset consisted of 76,500 (25,500 per class) 2 cm2 patches98

cropped from the box photos and all models were trained to identify non-core artifacts99

in the images to avoid them being labelled as classes of geological interest. Although this100

work showed promising results, such models are only capable of classifying a few distinct101

classes of rock and consequently have only limited applicability to more complex image102

datasets that display greater variability of geological features. Most recently, Fu et al.103

(2022) demonstrated a supervised workflow based on fine-tuning CNNs to identify 10104

rock types commonly encountered during subsurface engineering projects. Their work105

showed ResNeSt-50 produced the best prediction accuracy of 99.6 %. Supervised train-106

ing of models requires careful preparation of the input data by an expert to ensure each107

desired class is well represented. For this reason, Fu et al. (2022) trained their models108

using 15,000 3 cm2 labelled images of best-case examples of each rock type having first109

discarded images not of interest, such as crushing structures and crayon marks. Images110

removed from the training dataset were also defined based on what the authors believed111

would confuse the CNNs and cause them to mis-classify features of interest.112

A concerted effort to label a large database of images of all known rock types would pro-113

vide a widely applicable training dataset, however, unlike in satellite imagery and ob-114

ject recognition research, there are no publicly available training datasets for classify-115

ing common rock types in drill core (Deng et al., 2009; Van Etten et al., 2018). This is116

partly because resources are rarely put toward labelling such datasets, but also because117

it is difficult to combine individual datasets with variable resolution and quality, often118

stored in different media and file formats, into a single database. In response to these119

limitations, this study is intended to provide researchers with a means of analysing large120

numbers of images on a per-dataset basis with minimal effort in the hope that widely121

applicable training datasets of rock images can begin to emerge. Furthermore, use of spa-122
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CNN framework Feature extraction Spatial metadata Reference

Autoencoder (AE) unsupervised (autoencoder) N Yamada et al. (2021)

Location Guided Autoencoder (LGA) unsupervised (autoencoder) Y Yamada et al. (2021)

SimCLR unsupervised (contrastive learning) N Chen et al. (2020)

GeoCLR unsupervised (contrastive learning) Y Yamada, Prügel-Bennett, et al. (2022)

ResNet18 supervised N He et al. (2016)

Table 1: List of the machine learning models used in this study. The feature extraction
column identifies whether the model learns with (supervised) or without (unsupervised)
domain expert input and the spatial metadata column identifies models which utilize spa-
tial information accompanying images during training (Y = yes, N = no). The references
provided are those that outline the original development of each model.

tial information alongside numerical datasets have been shown to improve the automatic123

classification of geological information stored in the data (Yamada et al., 2021; Hill et124

al., 2015, 2021), and here we make a first attempt at leveraging spatial information when125

classifying digital geological core imagery.126

In this study we modify two unsupervised learning frameworks originally designed to use127

3D geolocational metadata for improved semantic interpretation of seafloor imagery (Yamada128

et al., 2021; Yamada, Prügel-Bennett, et al., 2022; Yamada, Massot-Campos, et al., 2022)129

to instead use the x-y coordinate of where an image lies on the surface of a 3D drill core130

image. The first framework uses an autoencoder that was trained both with and with-131

out the addition of this spatial metadata, whereas the second uses two contrastive learn-132

ing methods, one that makes use of metadata, and another that does not (Table 1). The133

performance of each framework is reviewed to determine which is most accurate and we134

present a novel semi-supervised workflow for training CNNs using images accompanied135

by spatial metadata. The output of the best performing model is then used to automat-136

ically generate a downhole log of hydrothermal alteration extent, which is bench-marked137

against expert generated alteration logs.138

2 Methods139

2.1 Background140

2.1.1 Artificial Neural Networks141

An artificial neural network (ANN) is a computer model inspired by the structure142

of the human brain and consists of multiple layers of stacked artificial neurons, also re-143

ferred to as perceptrons or nodes (Rosenblatt, 1962). Each artificial neuron is a math-144

ematical model that takes multiple binary inputs (x) and gives a binary output deter-145

mined by whether the weighted sum of the inputs meet some threshold value (t). The146

weight (w) assigned to a given input expresses its importance to the output, and the weight147

and threshold parameters can be adjusted to customize a model to a particular task. To148

exert control on how easily a neuron will give a 1, the threshold is often replaced by a149

bias (b ≡ −t) and the neuron’s activation function is expressed using the following dot150

product:151

output =

{
0, if w · x+ b < 0,

1, if w · x+ b > 0.
(1)
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The layers of stacked neurons between the input and output layers of an ANN are called152

hidden layers and each neuron in a hidden layer receives its input from every neuron of153

the previous layer. Therefore, each neuron in an ANN is fully connected to each neu-154

ron in the adjacent layers (Fig. 1a) (Krogh, 2008). By using weights, biases and activa-155

tion functions, each hidden layer extracts features within its input, and multiple hidden156

layers make a flexible model capable of identifying complex patterns within a dataset.157

The final output layer of an ANN provides a prediction for the information passed through158

the hidden layers, and the number of neurons in this layer depends on the application.159

In the case of a binary classification model the last layer would contain only two nodes,160

but for more complex cases the number of nodes will be equal to the number of poten-161

tial classes in the input data. One drawback of using ANNs for image processing is that162

each neuron possesses a unique weight and bias, requiring great processing power due163

to the large number of parameters handled by the model. This, as well as the fact that164

ANNs do not achieve spatial invarience, that is they are unable to recognise features re-165

gardless of their specific location in an image, limit their use in computer vision appli-166

cations.167

2.1.2 Convolutional Neural Networks168

A Convolutional neural network (CNN) is a type of deep ANN developed in the169

early 1990s that can account for the spatial structure of input data (LeCun et al., 1995).170

Innovations over the last decade have made CNNs increasingly popular for computer vi-171

sion tasks, as their architecture is particularly suited for image analysis (Krizhevsky et172

al., 2012; Russakovsky et al., 2015). Unlike the fully connected layers of an ANN, each173

neuron in a CNN’s first hidden layer corresponds to a rectangular region of a defined size174

and location in the input image (Fig. 1b). This rectangular region is processed by a con-175

volutional filter or kernel with a weight and bias and is known as a ‘local receptive field’.176

The local receptive field then moves across the input neurons while keeping the same weight177

and bias when mapping information to its corresponding neuron in the hidden layer. It-178

erating this process across an image (convolution) creates a hidden layer (feature map)179

of neurons capable of detecting the same feature anywhere in the image. Each hidden180

layer of a CNN can contain multiple feature maps, and at shallow levels they can detect181

simple features, such as lines and shapes, whereas at deeper layers increasingly more com-182

plex features become identifiable. Convolution layers are then followed by pooling lay-183

ers that simplify the output of each feature map by summarising a specified sub-region184

into a condensed feature map (Fig. 1b). Pooling in a CNN is a downsampling operation185

that reduces spatial dimensions while retaining important features, aiding in computa-186

tional efficiency, and promoting robustness and generalization of the network. The ma-187

jor benefit of using local receptive fields and pooling layers, is that they make CNNs well188

adapted to handle spatial invariance within an image. The feature maps created by convolution-189

pooling layers are multi-dimensional arrays (tensors), which make them suitable for iden-190

tifying complex features, but not for assigning class scores or probabilities. Therefore,191

the tensors produced by the last convolution-pooling layer are flattened into a one-dimensional192

vector that is fed into a fully connected layer of neurons. This fully connected layer trans-193

forms its input into high-level features that can be used for classification and regression.194

The output layer of a CNN is also a fully connected layer consisting of as many neurons195

as possible classes, and the input image is classified depending on which of these neu-196

rons is triggered by its activation function (Fig. 1b).197

2.1.3 Unsupervised Machine Learning198

In computer vision, there are many publicly available databases of labelled images,199

such as ImageNet, MS COCO and CIFAR-100, that can be used to train CNNs to clas-200

sify common objects. However, a supervised approach cannot be used when the classes201

within these datasets have no relevance to the application domain. In fields such as ge-202
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Fig. 1: Diagrams showing (a) the basic structure of an artificial neural network and (b) a
convoluted neural network.
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ology, there are no large labelled datasets of rock images available to pre-train a model203

and the labelling effort required to generate enough training images for supervised ap-204

proaches would be too time consuming, particularly in the context of a drilling campaign.205

This is because a given campaign often involves drilling numerous holes that may yield206

hundreds or thousands of meters of complex drill core, all of which needs describing by207

an expert. A solution to this is to utilize unsupervised CNN frameworks capable of ex-208

tracting salient information from geological images without any prior labelling effort, and209

two such frameworks include autoencoders and contrastive learning.210

2.1.4 Autoencoders211

An autoencoder (AE) is a form of neural network architecture used for unsuper-212

vised learning and dimensionality reduction that consists of two elements. Firstly, an en-213

coder (f) that takes an input (x) and compresses it into a lower dimensional represen-214

tation, or latent representation (h = fϕ(x)) (Fig. 2Bii). Secondly, a decoder (g) which215

uses the latent representation to re-construct the input to give xr = gθ(h)(Fig. 2Biii),216

where ϕ and θ are the parameters of the encoder and decoder, respectively. Where the217

input data is continuous ({x}ni=1), the difference between x and xr (reconstruction loss)218

can be calculated using the mean square error, making the optimizing objective (loss func-219

tion) of the AE:220

min
ϕ,θ

Lrec = min
1

n

n∑
i=1

||xi − xri||2 (2)

The major objective of network training in machine learning is to find the minimum loss.221

Clustering techniques are often used to improve the grouping of similar datapoints in la-222

tent space by using both the reconstruction loss (Lrec) and clustering loss (Lclust) (Aljalbout223

et al., 2018; Min et al., 2018). The purpose of Lrec is to learn realistic features, whereas224

Lclust promotes discrimination and grouping of feature points within the latnt space (Min225

et al., 2018). When using deep clustering, the loss function becomes:226

Lall = (1− λ)Lrec + λLclust (3)

where λ ∈ {0,1} is a hyperparameter that balances Lrec and Lclust and should be set227

to prevent over/under fitting of the model for a given dataset. If set too low, over-fitting228

will occur as the model has learnt too much about the noise in the data, limiting its abil-229

ity to identify characteristic features of each class. In contrast, if set too high under-fitting230

occurs as the model becomes too simplistic and overlooks key patterns in the data. Lclust231

can be obtained by calculating the Kullback-Leibler (KL) divergence loss between the232

soft assignment probability of sample i belonging to cluster j with an auxiliary target233

distribution using the following equation (Xie et al., 2016):234

Lclust = KL(P ||Q) =
∑
i

∑
k

piklog
pik
qik

(4)

where pik and qik are the ith sample of the kth cluster of the target (P ) and soft (Q) prob-235

ability distributions (Van der Maaten & Hinton, 2008). Calculating all soft assignments236

for a sample produces probability distribution Q, whereas the target probabilistic dis-237

tributions (P ) are derived by squaring qik and normalizing by the sum of its soft clus-238

ter frequencies:239

qik =

(
1 + ∥hi − µk∥2

)−1∑
k′ (1 + ∥hi − µk′∥2)−1 (5)
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pik =
q2ik/fk∑
k′ q2ik′/fk′

(6)

where hi = fϕ(xi), µk is the centroid of cluster k, and fk =
∑

i qik is the soft cluster240

frequency. Making use of h, which is a compact version of the original input, allows auto-241

encoders to pick out only the most salient features in the data.242

2.1.5 Location Guided Autoencoder243

Spatial information is important in many applications, and while CNNs can find244

patterns within an image, many spatial patterns are larger than the footprint of a sin-245

gle image cropped from a larger scene and CNNs cannot correlate these patterns. In re-246

sponse, Yamada et al. (2021) developed a novel location guided autoencoder (LGA) for247

automated semantic interpretation of seafloor images that utilizes 3D geolocational meta-248

data. Their base autoencoder for feature extraction uses AlexNet (Krizhevsky et al., 2012),249

where the encoder is AlexNet’s original architecture and the decoder is an inverted ver-250

sion of the encoder (Fig. 2Bii). The LGA was designed with the assumption that “two251

images captured close together look more similar than those far apart”. Using this as-252

sumption, the position of data in the latent space (hi and hj) is modified by account-253

ing for the distance between the locations (yi and yj) of the original images (xi and xj)(Fig. 2Aii).254

The assumption can then be applied by using a Gaussian distribution as a kernel to quan-255

tify the affinity between h and geographical space (y)(Fig. 2Biv):256

q′ij =
(1 + ∥hi − hj∥)−1∑

i′
∑

j′ (1 + ∥hi′ − hj′∥2)−1 (7)

p′ij =
(1 + d(yiyj))

−1∑
i′
∑

j′ (1 + d(yi′yj′))
−1 (8)

where q′ij and p′ij are the values of the affinity matrices at index (i, j) in the latent space257

(Q′) and physical space (P ′) respectively, and d(yi, yj) = min ∥yi, yj∥2d2max. In this con-258

text dmax is the user-defined maximum distance between two locations that will be cor-259

rected and will vary on the application domain and scale of the image scene. The LGA260

is trained to minimize the KL divergence between Q′ and P ′ using the following loss func-261

tion:262

Lall = Lrec + λLgeo = Lrec +KL(P ′∥Q′) (9)

This approach results in hi and hj being moved closer together in feature space if they263

are close in physical space.264

2.1.6 Contrastive Learning265

Contrastive learning is an unsupervised machine learning technique that attempts266

to learn features in an image by comparing similar pairs of images close together in h267

to a random dissimilar pair embedded far apart in h. The aim of this comparison is to268

maximize the similarity between positive pairs (images that look similar) and minimize269

the similarity between negative pairs (images that look dissimilar). An issue with con-270

trastive learning is that you must confirm that the positive pair of images are indeed sim-271

ilar. In response, Chen et al. (2020) developed a framework for self-supervised contrastive272

learning of visual representations (SimCLR) that attempts to improve agreement between273

variably augmented images (xi and xj) derived from the same original image (x). At each274
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training iteration, a minibatch (i.e. a small subset) of N images is taken for augmenta-275

tion. During augmentation, random cropping, colour distortion and Gaussian blur are276

applied before a CNN is used as a base encoder (f(·)) that extracts representations, known277

as feature vectors (hi), from the augmented images (hi = f(xi)) (Fig. 2Cii). These vec-278

tors then act as the input for a projection head (g(·)) consisting of a two-layer multi-layer279

perceptron (MLP), which produces an embedding (zi = g(hi)) that is mapped to a la-280

tent space (Fig. 2Ciii) where the following loss function is applied to compute the con-281

trastive loss (ℓ):282

ℓi,j = − log

 exp
(

sim(zi,zj)
τ

)
∑2N

k=1 1[k ̸=i] exp
(

sim(zi,zj)
τ

)
 (10)

where sim() is the cosine similarity; τ is a temperature parameter that controls the penalty283

given to hard negative samples, which controls the smoothness of the probability distri-284

bution (Wang & Liu, 2021; Kumar & Chauhan, 2022); and 1[k ̸=1] ∈ {0,1} is the indi-285

cator function, which is set to 1 when k ̸= 1. The total loss (L) for the minibatch can286

then be calculated as:287

L =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] (11)

At each training iteration a stochastic gradient descent (SGD) optimizer with linear rate288

scaling is used to update the base encoder and projection head parameters toward the289

fastest training loss (Goyal et al., 2017). Fine-tuning of a CNN trained using SimCLR290

also showed improved accuracy even with two orders of magnitude fewer hand labelled291

images provided (Chen et al., 2020).292

2.1.7 GeoCLR293

Although the method proposed in SimCLR works well to present individual sim-294

ilar and dissimilar images, it does not account for spatial patterns with footprints larger295

than a single image. To overcome this limitation, Yamada, Prügel-Bennett, et al. (2022)296

developed ‘georeference contrastive learning of visual representation’ (GeoCLR) to ef-297

ficiently train CNNs by leveraging georeferenced metadata. Their dataset consisted of298

86,772 seafloor images collected by an autonomous underwater vehicle (AUV) from a sin-299

gle locality, and each image had an associated depth, northing and easting. In summary,300

GeoCLR generates a similar image pair (x̃i and x̃′
j) from two different images (x and x′)301

that are close together in physical 3D space (Fig. 2Ci). Image x possesses a unique ge-302

olocation (geast, gnorth, gdepth) and image x′ is then selected from a batch of images with303

a 3D geolocation (g′east, g
′
north, g

′
depth) within a given distance (r) of image x provided304

it meets the following criteria:305

√
(g′east − geast)2 + (g′north − gnorth)2 + λ(g′depth − gdepth)2 ≤ r (12)

A scaling factor (λ) is used to include or exclude images that are close but at different306

depth. Once image pairs are selected the same augmentations are applied as SimCLR307

to generate the similar image pair (xi and x̃′
j) (Yamada, Prügel-Bennett, et al., 2022).308

Using a semi-supervised framework, the average classification accuracy of GeoCLR was309

10.2 % higher than an identical CNN trained using SimCLR alone, highlighting the value310

of utilizing geolocational metadata when using a latent space for feature extraction.311
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2.2 Adapting Spatial Machine Learning for Drill Core Imagery312

Here we present a modification of LGA and GeoCLR that involves calculating 2D313

cylindrical (x-y) coordinates, instead of 3D Cartesian coordinates, to guide semantic in-314

terpretation of a 2D core image (Fig. 2Aii). Typically, images taken during scientific cor-315

ing operations include: 2D scans of a cut surface of a core section half, 2D images of core316

sections (either cut or uncut) in a core box, or 3D line scans taken on a 360 degree core317

scanner that images the outer surface of the uncut core. As 2D images are more com-318

mon, and when a 3D image is unwrapped it is also 2D (Fig. 2Ai), spatial metadata ac-319

companying a given cropped patch from a core image is a 2D x-y coordinate. All these320

image formats capture visual information about the rocks in the form of a three-channel321

(RGB) 2D array where the top and bottom of the image have an associated depth down322

hole. Cores also have different diameters depending on the drill bit used to collect them323

and this information can be used to calculate the horizontal position of a given patch324

(si) as a function of the minimum (mi) and maximum (Mi) width of the original image:325

si = mi +
fi

(Mi

n )
(Mi −mi) (13)

Where n is the number of adjacent patches that fit horizontally into Mi and depends on326

the image resolution and user defined patch size, and fi ∈ {0,. . . ,(Mi

n )} is the horizon-327

tal patch index. Similarly, the vertical position (sj) of each patch can be calculated in328

the same fashion:329

sj = mj +
fj

(
Mj

n )
(Mj −mj) (14)

Where mj and Mj are the minimum and maximum depth of the original image and fj330

∈ {0,. . . ,(Mj

n )} is the vertical patch index. Our proposed workflow calculates a horizon-331

tal 2D spatial location, or polar coordinate, for a given patch and combines this with the332

depth downhole the patch is from to give an x-y coordinate (si, sj) which is used to de-333

termine how close patches are in physical space. Following the methods described above334

for GeoCLR, our polar coordinate system is used to select x̃′ from a batch of images with335

a spatial location (s′i, s
′
j) that meets the following criteria:336

√
(s′i − si)2 + (s′j − sj)2 ≤ r (15)

Patch pairs (xi and x̃′
j) then go through the same augmentations used by SimCLR and337

GeoCLR to extract features from the input data. In contrast, the LGA was modified to338

use (si, sj) when quantifying the affinity between h and y using a Gaussian distribution339

as a kernel, where sigma is set to dmax.340
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Fig. 2: Diagram of the semi-supervised workflow used in this study. Unsupervised feature
extraction used both the LGA (red path) and GeoCLR (purple path) to create latent
representations of the dataset, and the workflow involves image processing, sampling, la-
belling and clustering prior to fine tuning of the pre-trained CNNs generated by LGA and
GeoCLR (blue path). Yellow bars indicate completely automated steps, whereas dark and
light green bars indicate supervised and semi-supervised steps, respectively. Modified after
Yamada et al. (2021, 2022).

–11–



manuscript submitted to Earth and Space Science

2.3 Experiment and Workflow341

In this study the performance of frameworks that utilize the spatial context of train-342

ing images (GeoCLR and LGA) are compared to equivalent methods that do not use this343

context (SimCLR and AE) (Table 1). Additionally, a 4800 (400/class) image subset was344

used for supervised training of ResNet18 to benchmark against the performance of un-345

supervised learning results. A summary of the models tested in this study can be seen346

in Table 1.347

2.3.1 Dataset348

All images used in this study are of core recovered from Oman Drilling Project (OmanDP)349

Hole GT1A drilled into gabbroic rocks from the Semail ophiolite (Fig. 3), an ancient slab350

of ocean crust preserved on the Arabian margin (Kelemen et al., 2020). All cores were351

imaged using a DMT CoreScan3 digital line scanner which rotated them about their cylin-352

drical axis as the DMT incrementally imaged the full length of the core exterior. Cores353

were imaged one section at a time, and each section was no longer than 1 m, as this was354

the maximum length the scanner could fit. Each section had a blue and red crayon line355

drawn along its length to indicate way up and as a guide for where it was to be cut into356

an archive (preserved for future reference) and working (for sampling) half. When ori-357

entated to its original vertical position, the blue line is to the left of the red. The total358

depth of Hole GT1A is 403.4 m; cores collected from the upper 254.2 m were drilled with359

an HQ diamond bit yielding core with a diameter of 63.5 mm (1995 pixels). Below this360

depth, coring used a narrower PQ bit and cores are 47.8 mm in diameter (1493 pixels)361

(Kelemen et al., 2020). All images were taken at a 10 pixel/mm resolution and stored362

as bitmap files.363

Core exterior images collected during the OmanDP were an excellent candidate for this364

study due to the large amount of data accompanying them in the form of VCDs and de-365

tailed core logs generated by expert geologists. Therefore, all labelling of training and366

validation images in this study were cross referenced and groundtruthed to these data,367

as well as confirmed by the geologists involved in the description of these cores.368

369

2.3.2 Training Image Preparation370

Raw bitmap images were prepared for training by: 1) transposing to the correct371

vertical orientation, 2) cropping any valueless pixel columns from image borders, 3) ‘ro-372

tating’ the image horizontally until the blue cutting line was at 100 pixels from the left373

of the image (Fig. 2Ai). Many of the images had been rotated more than 360° during374

scanning, making the apparent resolution of 10 pixels/mm inaccurate. However, this only375

duplicates ∼20 pixels either side of the vertically rotated raw image. In some cases, im-376

ages were over-rolled (>540°), which was resolved by cropping them to the correct width377

of 1995 or 1493 pixels, depending on core diameter. Uneven surfaces appear as visual378

interference, particularly at either end of a section with angular contacts with the sec-379

tions above or below it. Spurious reflections are also present where tape was used to hold380

fractured core together during scanning, or where foam was used as a spacer in some cases381

where material was too fragmented to scan. Once prepared, all section images were seg-382

mented to produce 722,157 100x100 pixel (1 cm2) patches that were used to train the383

machine learning models (Fig. 2Aii). Patch size was chosen to be small enough to avoid384

multiple classes occurring in a single image, but large enough to be labelled by an ex-385

pert (Fig. 4).386

387
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Fig. 3: Location and cross section of the Hole GT1A drill site, Oman. From Kelemen et
al. (2020)
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Fig. 4: a) Diagram of a 3D scan of a section of core, and b) the unrolled 2D version of
(a) with an example of the segmentation style used to generate training patches used in
this study (red grid not to scale). The top left corner of each training patch is the loca-
tion of the patch’s depth and arc position on the core surface (right).

2.3.3 Self-supervised Learning Configuration388

Configurations for all models are set to those deemed optimal by Yamada et al. (2021)389

and Yamada, Prügel-Bennett, et al. (2022) during their development of the LGA and390

GeoCLR methods, except for threshold closeness (dmax and r) and number of training391

cycles. All training patches were expanded to 227 x 227 pixels during feature extraction392

for the AE and LGA, as this was the size required by the AlexNet-based autoencoder.393

In contrast, SimCLR and GeoCLR methods re-scale each patch to a resolution of 2 mm/pixel394

and randomly crop out a 224x224 region for use during training (Yamada, Prügel-Bennett,395

et al., 2022; Yamada et al., 2021). The number of dimensions in latent space (h) for the396

autoencoders is set to 16, whereas for SimCLR and GeoCLR it is set to 128. For all frame-397

works, the number of images fed into the model at each training iteration (mini-batch)398

was set to 256 and training ran for 200 iterations (epochs). Patches physically adjacent399

in all directions to xi were deemed close enough spatially to assume they will look sim-400

ilar, therefore dmax and r were set to 1.5 cm. Hyperparameters such as learning rate and401

weight decay for all models were set to the optimal values determined during their de-402

velopment (see reference in Table 1).403

2.3.4 Geologically Constrained Semi-supervised Clustering404

A total of 12 classes were defined to be representative of the most common rock405

types and features that occur downhole within Hole GT1A (Kelemen et al., 2020) (Fig. 5).406

All 722,157 image patches were used during self-supervised learning, and two subsets of407

100 and 300 per class were expert labelled for validation and training, respectively (Fig. 2Aiii).408

Several classes are not of geological interest so to avoid these features being incorrectly409

labelled, they were treated as distinct classes. These include spurious noise from tape410

and foam, as well as crayon lines and dark empty space. Gabbros in Hole GT1A were411

subdivided based on their colour, with light grey, more felsic, patches being termed sim-412

–14–



manuscript submitted to Earth and Space Science

ply ‘gabbro’. Gabbro with ∼1-5 % darker minerals was termed ‘olivine-bearing gabbro’,413

whereas patches with ∼6-50 % dark minerals were referred to as ‘olivine gabbro’, and414

patches containing ≥50 % dark minerals were labelled as ‘mela-olivine gabbro’. Dark min-415

erals in Hole GT1A are primarily a mix of olivine and clinopyroxene and distinguishing416

between the two in the training images was not always possible. Therefore, all expert417

labels given to patches were groundtruthed to the lithology and modal abundances recorded418

for the appropriate interval in the OmanDP VCDs. Other classes considered of inter-419

est for alteration logging included: veins composed of white minerals (vein type A), veins420

that contain a mix of prehnite and chlorite (vein type B), ‘fracture’ and ‘alteration zone’,421

which were also groundtruthed using the OmanDP vein and alteration logs (Kelemen422

et al., 2020). Here alteration refers to parts of the core where primary igneous miner-423

als have been replaced by secondary phases due to hydrothermal alteration and/or de-424

formation, which occurs in Hole GT1A mostly as patches, halos and densely spaced vein425

networks. Within Hole GT1A there is variability in the dominant secondary minerals426

present in an alteration zone (Kelemen et al., 2020; Greenberger et al., 2021), however,427

all were placed in a single class to capture zones of focused alteration. In many cases,428

patches labelled as alteration zone could be confused as a type of vein if the annotator429

only looks at the 1x1 cm patch. However, when the spatial context of a patch revealed430

that it sits within an altered interval, and is not part of a single linear vein, it was la-431

belled as ’alteration zone’.432

For all experimental configurations a class-balanced approach was used where an equal433

number of representative expert annotations per class (M/n) were manually generated.434

A class-balanced approach can be time consuming when compared to other selection meth-435

ods (Yamada, Prügel-Bennett, et al., 2022). However, it ensures all labels provided are436

representative of the high intra-class variation at the cm-scale in the rocks. Each model437

was trained multiple times, varying M/n to find its optimal value. Labelling 100 images438

for each of the 12 classes in this study took ∼16-24 hrs. Therefore, a maximum of M/n439

= 300 was chosen because the time taken to manually label more images would be in-440

efficient in the context of real-time core analysis during a geological coring project. For441

a given M/n, self-supervised training produced a latent representation of the dataset be-442

fore a support vector machine with a radial basis function as a kernel (R-SVM) was used443

to classify the data based on the expert annotated subset (Fig. 2Aiv). The outcome of444

this classification is all images are assigned a computer-generated pseudolabel, which were445

then compared to the expert labelled validation subset to quantify the accuracy of each446

model. The best performing configuration for each model was then fine-tuned with the447

pseudolabels generated by the R-SVM, and in all cases ResNet18 was used as the fine-448

tuning classifier (Fig. 2Av).449

450

2.3.5 Supervised Training Configuration451

Supervised learning methods use labelled data that have corresponding target la-452

bels or outputs, whereas unsupervised learning networks extract the underlying struc-453

ture of the data with no target output. Unsupervised approaches are used in this study454

to generate a latent space before M/n expert labelled images are provided for the au-455

tomatic assignment of computer-generated pseudolabels to the entire dataset, which then456

allow for fine tuning. Fine tuning of a neural network takes the initial pre-trained net-457

work as a starting point before adjusting its parameters by re-training using a labelled458

subset of the dataset in a supervised fashion. All semi-supervised frameworks trained459

with M/n = 100 and M/n = 300 were fine-tuned by feeding the entire pseudolabelled460

dataset into ResNet18 with a minibatch size of 128, learning rate and weight decay of461

1x10−5 and Adam optimizer (Kingma and Ba, 2014)(Fig. 2Aiv-v). Models trained with462

other values of M/n were not fine-tuned as it would have been computationally burden-463

some.464
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Fig. 5: Example images of expert defined classes that each model was trained to identify.
These were chosen to represent the most common rock types in Hole GT1A as well as
highlight areas of intensified hydrothermal alteration and fracturing. A total of 400 im-
ages were expert labelled per class, with 300 used for training and 100 for validation.
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To quantify the improvement of using unsupervised feature extraction prior to fine tun-465

ing over a simple supervised approach that would require the same expert labelling ef-466

fort, the expert labelled training (300/class) and validation (100/class) images were also467

used for supervised training of ResNet18. ResNet18 was pre-trained using ImageNet (Deng468

et al., 2009), and its hyperparameters were set to the same as those used during fine-tuning469

of the unsupervised frameworks. Training ran for 200 epochs with a batch size of 128470

and the last layer of the network was set to the number of classes in the ImageNet database471

(1000). This is because the last layer of the pre-trained ResNet18 model used for fine-472

tuning is also 1000, due to the number of classes in the ImageNet database, which matches473

the approach Yamada et al. (2021); Yamada, Prügel-Bennett, et al. (2022) took when474

fine tuning CNNs trained using their LGA and GeoCLR methods.475

2.4 Validation476

When quantifying the performance of machine learning algorithms there are a num-477

ber of commonly used performance metrics, such as accuracy, precision and recall. Pre-478

vious attempts to use machine learning to classify core images have primarily reported479

model performance using only accuracy. However, when the proportions of each class480

within the training dataset are imbalanced accuracy can be inflated in cases where the481

model does particularly well at classifying the most abundant classes. In the case of us-482

ing unsupervised learning approaches, the relative abundance of each expected class in483

the dataset is not known. Therefore, in this study we use the f1 score for each class to484

quantify model performance as it accounts for both the model’s ability to correctly iden-485

tify positive instances (precision) and to capture all positive instances (recall):486

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

f1 = 2
Precision ·Recall

Precision+Recall
(18)

Where true positive (TP), false positive (FP), true negative (TN) and false negative (FN)487

results were generated by comparing the machine learning classifications given to the 1200488

validation images labelled by domain experts. The overall performance of each model489

is then presented in this paper as the class-averaged f1 score (macro average) where f1i490

is the f1 score of class i and n is the total number of classes identified in the dataset:491

f1(macro average) = 0.5

n∑
i=1

f1i (19)

3 Results492

3.1 Training Evaluation493

In all cases GeoCLR showed best performance, and the f1 scores (macro average)494

± 1σ for all model configurations can be seen in Table 2. At all values of M/n, the AE495

performed the worst, demonstrating that, without incorporation of spatial metadata, auto-496

encoders are not suitable for classification of core images. Excluding the AE, increas-497

ing M/n improved classification for all other models. The AE only showed minor improve-498

ment up to M/n = 200 before accuracy began to decrease (Fig. 6). For the remaining499

models, sigmoidal growth is seen where most of the improvement in accuracy occurs at500
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M/n

CNN framework Training type 3 10 30 100 200 300

AE semi-supervised 0.08 ± 0.04 0.08 ± 0.04 0.07 ± 0.04 0.09 ± 0.04 0.10 ± 0.05 0.10 ± 0.03

LGA semi-supervised 0.33 ± 0.25 0.38 ± 0.27 0.48 ± 0.25 0.59 ± 0.21 0.60 ± 0.22 0.62 ± 0.21

SimCLR semi-supervised 0.34 ± 0.23 0.49 ± 0.20 0.60 ± 0.19 0.69 ± 0.16 0.73 ± 0.15 0.74 ± 0.14

GeoCLR semi-supervised 0.40 ± 0.18 0.60 ± 0.14 0.74 ± 0.13 0.84 ± 0.07 0.86 ± 0.07 0.86 ± 0.07

ResNet18 supervised 0.33 ± 0.34 0.34 ± 0.35 0.52 ± 0.31 0.67 ± 0.21 0.82 ± 0.13 0.84 ± 0.11

Table 2: Results of each model trained using the semi-supervised workflow presented in
this paper, as well as supervised learning results for ResNet18. All models were trained
using an increasing number of training images per class (M/n) and all results are f1 scores
(macro average) ± 1SD.

the lower end between M/n = 3 and M/n = 100 (Fig. 6). Both the LGA and SimCLR501

show relatively large increases in accuracy at M/n >100 compared to GeoCLR, suggest-502

ing they would have further improved with M/n >300. At no point does the LGA out-503

perform contrastive learning or supervised methods, however it consistently outperforms504

the AE with a maximum of 52 % improvement. This indicates that introduction of spa-505

tial metadata when training auto-encoders drastically improves performance.506

Peak performance of GeoCLR is achieved with M/n = ∼100, as performance only in-507

creases by ∼2 % before plateauing with increased M/n. Furthermore, with only M/n =508

30, GeoCLR was able to outperform SimCLR and ResNet18 trained with an order of mag-509

nitude more annotations by 7 % and 5 %, respectively. Both contrastive learning meth-510

ods outperform ResNet18 at lower values of M/n, but at M/n >100 ResNet18 is more511

accurate than SimCLR and begins to achieve comparable performance to GeoCLR with512

increasing M/n. However, GeoCLR requires less domain expert effort to produce higher513

accuracy image classification than supervised (ResNet18) and black box (SimCLR) mod-514

els.515

3.2 Class Identification516

At lower values of M/n, the LGA outperforms the contrastive learning frameworks517

in correctly identifying non-geological classes, such as noise, foam and empty space. In518

contrast, both SimCLR and GeoCLR outperform the LGA in correctly distinguishing519

geological classes with fewer expert-generated labels (M/n<100). SimCLR correctly iden-520

tifies foam and empty space in almost all cases, however it fails to reliably distinguish521

crayon from the rock on which it was drawn. Regardless of increasing M/n, the LGA poorly522

distinguishes between classes containing single linear features, such as fracturesand veins.523

The gabbroic rock classes share a lot of visual similarity, given they are defined by sub-524

divisions of a property that actually spans a spectrum of values (dark mineral abundance).525

This is particularly evident at the extreme ends of the colour index used to define them526

in this study. These shared characteristics cause both the LGA and SimCLR to mis-label527

5-8 % olivine-bearing gabbro as olivine gabbro, whereas GeoCLR only confuses 4 % and528

6 % of olivine-bearing gabbro for gabbro and olivine gabbro, respectively. For the more529

mafic-rich (higher proportion of dark mineral) classes, all models mis-label ≥10 % of mela-530

olivine gabbro as olivine gabbro.531

532
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Fig. 6: f1 (macro average) scores of all models when 3, 10, 30, 100, 200, and 300 expert
labelled images per class (M/n) were used for training. Results of the contrastive learning
methods are shown in purple, the results of the autoencoder methods are in orange, and
the results of the supervised model are in grey. Solid lines indicate models that make use
of spatial metadata and dashed lines are those that do not, whereas circles represent the
unsupervised model results and diamonds supervised model results. Green lines indicate
the performance increase gained by fine tuning.
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M/n: 100 300

AE 0.09 ± 0.07 0.12 ± 0.06

LGA 0.62 ± 0.20 0.65 ±0.19

SimCLR 0.74 ± 0.13 0.80 ± 0.10

GeoCLR 0.85 ± 0.08 0.90 ± 0.05

Table 3: Fine tuning results for each model given as f1 scores (macro average) ± 1SD.

3.3 Fine Tuning533

Figure 7 compares fine-tuned networks pre-trained using the AE, LGA, SimCLR534

and GeoCLR frameworks to ResNet18. This comparison serves as an indicator of how535

well the semi-supervised methods outlined in this paper compare to commonly used su-536

pervised image classification techniques (Krizhevsky et al., 2012; K. He et al., 2016). Spe-537

cific f1 scores were generated by averaging the scores of related groups of classes to high-538

light how well models classify geological (fgeo), linear (flinear), bulk-rock (fgeo) and noisy539

(fnoise) classes (Fig. 7). All models except the AE are effective at filtering out noisy classes540

not of geological interest, whereas linear classes are those most often mis-classified. Ya-541

mada et al. (2021) demonstrated that their LGA improved the classification accuracy542

of linear classes to 53.7 %, as they had a characteristic spatial distribution. In this study543

linear features were the least well classified, even with spatial metadata, as the LGA gave544

an flinear of 0.43±0.07. Like the LGA, ResNet18 and SimCLR gave a relatively low flinear545

when compared to fgeo and fbulk, but are still more accurate than the LGA as they all546

have flinear >0.75. Unlike all other models, GeoCLR shows almost no variation between547

its ability to classify linear, bulk and geological features, and all have f1 scores of 0.87548

± 0.01-0.05. This consistent accuracy across class types, combined with its high fall =549

0.90 ± 0.01 and low error confirm that GeoCLR outperforms all other models evaluated550

in this study (Table 3). The classifications made by a fine-tuned model trained using our551

modified GeoCLR framework can therefore reliably be used to visualise and quantify ge-552

ological features within a borehole.553
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Fig. 7: Class averaged f1 scores for each model; fall is the macro average across all
classes; fgeo is the average score for geological classes only (gabbro, olive bearing gab-
bro, olivine gabbro, mela olivine gabbro, alteration zone, fracture, vein type A, vein type
B); flinear is the average score for linear classes (fracture, vein type A, vein type B); fbulk
is the average score for all bulk rock classes (gabbro, olivine bearing gabbro, olivine gab-
bro, mela olivine gabbro). fnoise is the average score for all non-geological classes. All
errors are shown as 1SD.

554
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Fig. 8: Visual comparison of original Hole GT1A core-section images to the classifications
given to patches taken from each section. For each section above, the left image is the
original 360◦ DMT image, the middle image is constructed using the patches from the
original section where colour corresponds to the class label generated using GeoCLR, the
right image is the classified patch image overlaid above the original DMT image.

555
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4 Automated Alteration Logging556

Plotting the relative abundance of fresh and altered rock downhole highlights re-557

gions of focused hydrothermal alteration within the ocean crust (Alt et al., 2010; Kele-558

men et al., 2020; Coggon et al., 2022; Teagle et al., 2023). During scientific drill core de-559

scription alteration petrologists gather this data using visual estimations of alteration560

extent. The scale at which estimations are made often varies between expeditions and561

the quantification has an element of subjectiveness. Here we present a novel and auto-562

mated approach to evaluating the spatial variations in the alteration extent downhole563

using the classifications generated by GeoCLR as a demonstration that AI-based approaches564

can standardise time-intensive geological tasks. Validation of our AI-based method is done565

by comparing it to an equivalent dataset generated by experts during the OmanDP.566

The expert-generated alteration data for Hole GT1A includes visual estimations of the567

average proportion of alteration features (halos, patches and deformation), as well as rel-568

atively fresh background rock within continuous downhole intervals. The depth and length569

of these intervals were defined by distinct changes in the nature/extent of alteration. To570

allow comparison with the cm-scale AI-based data through Hole GT1A, we assume that571

the proportions of alteration features in a given interval are representative of each cen-572

timeter of core in that interval. This assumption allowed a continuous downhole visual573

core description-based (VCD-based) estimate of the extent of alteration and background574

rock to be calculated by summing the proportions of all alteration types in an interval.575

A comparable depth-resolution dataset was then generated from the AI-based core log-576

ging data by calculating the percentage of patches labelled as ’alteration zone’ by Geo-577

CLR at each cm downhole (Fig. 8). Similarly, the proportion of images labelled as a class578

of gabbroic rock was used to infer the amount of relatively fresh background rock in each579

cm downhole. GeoCLR classified images of ‘alteration zone’ with an f1 = 0.9, although580

3 % and 5 % of the validation dataset were mis-labelled as foam and vein type A, respec-581

tively. Foam was inserted into regions too altered and fractured to be scanned on the582

DMT core scanner, and veins occur in conjunction with high levels of alteration in the583

core. Therefore, the presence of these classes are indicative of alteration, so their mis-584

classification is not expected to significantly bias a plot of alteration extent downhole.585
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Fig. 9: Proportions of alteration and relatively fresh background rock through an exam-
ple Hole GT1A core-section calculated using classifications generated using GeoCLR (red
line) are compared to the equivalent data generated by alteration petroligists during the
Oman Drilling Project (green line). The mean GeoCLR values through this interval (blue
dashed lines) show excellent agreement with the visual core description-based estimates
made by human experts. The vertical and horizontal scales of the core section image are
equal.

586

The 1 cm depth resolution of the AI-generated data reveals high frequency shifts in al-587

teration and background extent, whereas the lower-resolution VCD-based data displays588

sharp step-wise shifts between alteration intervals, which results in only a moderately589

positive correlation between the datasets (Table 4). Close inspection of a given 1 m sec-590

tion reveals that the AI-based data is capable of picking out small localised spatial vari-591

ations in alteration that would be impractical for an expert to log (Fig. 9). However, the592

mean AI-based estimates of alteration extent and proportion of background rock through593

a given section show good agreement with the VCD-based estimates through the same594

interval (Fig. 9), further confirming that the AI-based approach is capable of identify-595

ing and quantifying geologically significant features identified by the experts - albeit at596

higher-resolution. To better visualise the broad variations in alteration extent within Hole597

GT1A, downhole-running averages for every 1 m (length of a core section) and 4 m (length598

of a full core) were also calculated to smooth both the AI and VCD-based data (Fig. 10).599

On average the AI-based data at a given depth is 1-2% higher than the VCD-based data,600
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however, the Pearson’s Coefficient for the running averages of 1 m and 4 m shows sta-601

tistically significant positive correlations between the AI and VCD-based datasets (Ta-602

ble 4).603

Overall, the large-scale variations in the smoothed VCD-based data are also captured604

by the AI-based data, and only two major discrepancies are observed at 146 m and 365605

m (Fig. 10). The first of these discrepancies occurs where a highly fractured interval has606

been visually identified as 40.5 % altered, whereas GeoCLR defined most of the inter-607

val as ’fracture’. The second occurs where GeoCLR underestimates the amount of back-608

ground rock by classifying patches of gabbro at this depth as ’crayon’, highlighting the609

importance of minimising the markings made to the core surface prior to imaging.610

The comparable performance of our AI-based approach using images alone to tradition-611

ally labour-intensive on-site core description demonstrates that AI methods have the po-612

tential to revolutionise current practices in the field. Specifically, rather than dedicat-613

ing time to visually quantifying features experts could dedicate more time to discrete sam-614

ple analysis or carrying out more detailed analysis of important intervals. Also, experts615

could dedicate time to labelling training images on-site while core is on display, as this616

would further ground classifications to the actual recovered material. One limitation, how-617

ever, is that cores are imaged one section at a time, so model training could not com-618

mence until drilling operations at a site are complete. Also, depending on the amount619

of recovered material, training time may take too long to be done on-site forcing AI-based620

approaches to be postponed until post-expedition. Regardless, it is clear that modify-621

ing on-site workflow with approaches such as that outlined in this work in mind would622

save significant amounts of time during a given coring campaign.623
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Fig. 10: Running average (window size = 4 m) for the abundance (%) of altered rock
(left) and fresher protolith (right) downhole within Hole GT1A for both VCD-based es-
timations (green line) and AI-based estimations made using GeoCLR classifications (red
line). As the VCD-based data sums to 100 % of the core surface, the AI-based data was
normalized to also sum to 100 %.
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Window Size (cm)

Dataset 1 100 400

Alteration% r 0.50 0.71 0.72

p value 0.00 6.05× 10−61 3.61× 10−17

n 39784 392 99

Background% r 0.48 0.68 0.65

p value 0.00 1.79× 10−54 2.74× 10−13

n 39784 392 99

Table 4: Pearson’s Coefficient (r) and p values calculated by comparing the VCD-based
and AI-based alteration log data. Analysis was performed for three different depth res-
olutions: 1 cm; and for running averages calculated using 1 m and 4 m window sizes. n
indicates the number of data points compared for each iteration

5 Summary625

This study presents a novel semi-supervised machine learning approach for the anal-626

ysis and classification of geological images that utilizes spatial metadata for improved627

machine learning accuracy that can be implemented into existing CNN architectures. This628

method can be applied to any Earth or space image data sets that have accompanying629

spatial metadata, and implementing this workflow into several state-of-the-art machine630

learning frameworks has demonstrated that:631

1. When only 30 labeled images per class are used for training, incorporating spa-632

tial metadata improves the classification accuracy of unsupervised auto-encoder633

and contrastive learning frameworks by 30 % and 11 %, respectively. Increasing634

this to >100 images per class further improves performance over non-spatially guided635

auto-encoders and contrastive learning by 50.7 % and 13.3 %.636

2. Of the unsupervised learning models tested, spatially guided contrastive learning637

(GeoCLR) had the best classification accuracy, regardless of the number of expert-638

generated annotated images used for training. GeoCLR outperforms both non-639

spatially guided and supervised methods with an order of magnitude fewer expert-640

generated annotations and reaches maximum accuracy with ∼100 annotated im-641

ages per class (1200 images).642

3. Fine tuning of unsupervised models improves classification accuracy by an aver-643

age of 2.25 %, and GeoCLR trained with 300 expert-generated annotations per644

class showed the best performance in this study with a classification accuracy of645

90 ± 0.05 % after fine tuning. Classes containing linear features, such as veins and646

fractures, with spatial context extending beyond the frame of a single patch are647

the least well classified class type for all models except GeoCLR, which labels all648

types of class with comparable accuracy.649

4. Classifications generated using methods described here allow for the automated650

generation of downhole datasets traditionally created by experts over the course651

of days to weeks. Comparing downhole estimates of the amount of altered and rel-652

atively fresh rock based on both GeoCLR classifications and visual expert esti-653

mations indicate a statistically significant positive relationship (Pearson’s Coefi-654

cient = 0.7). Therefore, our automated method provides a reliable and efficient655

means of analysing geological images at higher resolutions than would be feasi-656

ble using current manual approaches.657
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Open Research Section658

All images and geological log data used in this study are available from the Oman659

Drilling Project website (publications.iodp.org/other/Oman/OmanDP.html).660
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