57 research outputs found

    Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence

    Get PDF
    Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients, bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used an fMRI block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction ( n = 20, with balanced left/right lesion sites). Results Analysis of 10 right-hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left-hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right-hemispheric stroke. Left-hemispheric stroke was in general characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts are novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.info:eu-repo/semantics/publishedVersio

    Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer’s disease

    Get PDF
    Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer’s disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (Aβ) status as positive or negative (Aβ+ vs Aβ−). In addition, 13 rats (5 wild type and 8 McGill-R-Thy1-APP transgenic (Tg)) were examined. In the clinical study, reduced precuneus/posterior cingulate cortex and hippocampal grey matter density were significantly associated with increased NFL concentrations in cerebrospinal fluid (CSF) or plasma in MCI Aβ+ and AD Aβ+. Moreover, AD Aβ+ showed a significant association between the reduced grey matter density in the AD-vulnerable regions and increased NFL concentrations in CSF or plasma. Congruently, Tg rats recapitulated and validated the association between CSF NFL and grey matter density in the parietotemporal cortex, entorhinal cortex, and hippocampus in the presence of amyloid pathology. In conclusion, reduced grey matter density and elevated NFL concentrations in CSF and plasma are associated in AD-vulnerable regions in the presence of amyloid positivity in the AD clinical spectrum and amyloid Tg rat model. These findings further support the NFL as a neuronal injury biomarker in the research framework of AD biomarker classification and for the evaluation of therapeutic efficacy in clinical trials

    Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden

    Get PDF
    INTRODUCTION: Fluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODS: We measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (Aβ) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTS: CSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired Aβ-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with Aβ PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSION: NTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTS: An assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated. NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration. NTA-tau can successfully track in vivo tau deposition across the AD continuum. Plasma NTA-tau increased over time only in cognitively impaired amyloid-β positive individuals

    Gene expression profiling in genetic animal models of provide elements to unveil the molecular mechanisms underlying epileptogenesis in rodents

    Get PDF
    OBJECTIVE: The objective of this study was to characterize and compare the genetic profile of two rodent models of epilepsy (Wistar Audiogenic Rat - WAR and rats with generalized epilepsy with absence seizures-GEAS) using gene expression analysis METHODS: We used microarray technology for gene expression analysis. RESULTS: The analysis of gene expression profiles in WAR showed among genes up-regulated Neurod1, involved in the development of the cochlear duct. In addition, we found significant differences in gene expression of Apbb1, Foxg1 and Scn1A. GEAS rats had differentially expressed genes related to the development of central nervous system, as well as genes involved in the MAPK pathway, transcription factors, neuronal migration and apoptosis. CONCLUSION: This study may help to clarify the underlying molecular mechanism that leads to the predisposition to seizures in these animals. Our results indicate the activation of distinct molecular pathways in both models.OBJETIVO: O objetivo desse trabalho foi caracterizar e comparar o perfil genético de dois modelos de epilepsia em roedores (Wistar Audiogenic Rat - WAR e generalized epilepsy with absence seizures - GEAS) através da análise da expressão gênica em larga escala. MÉTODOS: Para a análise do perfil de expressão gênica foi utilizada a técnica de microarranjos de DNA (microarray). RESULTADOS: Na linhagem WAR a análise do perfil de expressão mostrou que dentro os genes mais hiperexpressos está o Neurod1, envolvido com o desenvolvimento do ducto coclear. Além desse encontramos também diferenças significativas na expressão dos genes Apbb1, Foxg1 e Scn1A. Já nos animais GEAS os genes com maior expressão diferencial foram àqueles relacionados com o desenvolvimento do sistema nervoso central, além de genes envolvidos com a via da MAPK, fatores de transcrição, migração neuronal e apoptose. CONCLUSÃO: Esta análise pode ajudar a esclarecer o mecanismo molecular subjacente que leva a predisposição a crises nesses animais. Até o momento, nossos resultados apontam para a ativação de vias moleculares distintas em ambos os modelos.505

    Preclinical in vivo longitudinal assessment of KG207-M as a disease-modifying Alzheimer's disease therapeutic

    Get PDF
    In vivo biomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-β pathology as well as its effects on downstream processes associated with Alzheimer’s disease pathophysiology. Here, we applied an in vivo longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-β oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP). A five-week treatment with FC5-mFc2a-ABP (loading dose of 30 mg/Kg/iv followed by 15 mg/Kg/week/iv for four weeks) substantially reduced brain amyloid-β levels as measured by positron emission tomography and increased the cerebrospinal fluid amyloid-β42/40 ratio. In addition, the 5-week treatment rectified the cerebrospinal fluid neurofilament light chain concentrations, resting-state functional connectivity, and hippocampal atrophy measured using magnetic resonance imaging. Finally, FC5-mFc2a-ABP (referred to as KG207-M) treatment did not induce amyloid-related imaging abnormalities such as microhemorrhage. Together, this study demonstrates the translational values of the designed preclinical studies for the assessment of novel therapies based on the clinical biomarkers providing tangible metrics for designing early-stage clinical trials

    Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease

    Get PDF
    INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS: We assessed the diagnostic performance of p-tau181, p-tau217, and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION: Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. Highlights: p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis

    Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals

    Get PDF
    INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aβ) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18F]AZD4694 and tau-PET with [18F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aβ+ individuals. RESULTS: Highest associations with tau positivity in Aβ+ individuals were found for plasma pTau-217 (AUC [CI95%] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95%] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95% = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. Highlights: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aβ+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification

    Impaired gas exchange: accuracy of defining characteristics in children with acute respiratory infection

    Get PDF
    OBJECTIVE: to analyze the accuracy of the defining characteristics of the Impaired gas exchange nursing diagnosis in children with acute respiratory infection.METHOD: open prospective cohort study conducted with 136 children monitored for a consecutive period of at least six days and not more than ten days. An instrument based on the defining characteristics of the Impaired gas exchange diagnosis and on literature addressing pulmonary assessment was used to collect data. The accuracy means of all the defining characteristics under study were computed.RESULTS: the Impaired gas exchange diagnosis was present in 42.6% of the children in the first assessment. Hypoxemia was the characteristic that presented the best measures of accuracy. Abnormal breathing presented high sensitivity, while restlessness, cyanosis, and abnormal skin color showed high specificity. All the characteristics presented negative predictive values of 70% and cyanosis stood out by its high positive predictive value.CONCLUSION: hypoxemia was the defining characteristic that presented the best predictive ability to determine Impaired gas exchange. Studies of this nature enable nurses to minimize variability in clinical situations presented by the patient and to identify more precisely the nursing diagnosis that represents the patient's true clinical condition

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
    corecore