273 research outputs found

    A practical approach to the use of low molecular weight heparins in VTE treatment and prophylaxis in children and newborns.

    Get PDF
    Low-molecular weight heparins are currently the most commonly used anticoagulants in children and newborns. However, since thrombotic complications rarely occur outside large children’s hospitals, physicians often encounter some practical problems inmanaging these treatments when a pediatric thrombosis specialist is not available. The drug of choice is enoxaparin, due to its favorable FXa/FIIa ratio and the availability of pharmacokinetic and pharmacodynamic data. The treatment of acute thrombosis should be started with two daily injections but when compliance is an issue, a single daily administration schedule could be chosen for secondary prophylaxis ensuring careful measurement of the post 24-hour anti-FXa activity. Furthermore, a subcutaneous device may be a useful tool and a topical dermal anesthetic could be effective in controlling pain without affecting anti-FXa levels. In neonate and toddlers, where mini doses are frequently needed, the dead space of syringes and needles could represent an issue and therefore the use of insulin syringes without dead space is advisable,while a dilution of the drug is useful with other syringes. This article derives froma nonsystematic review of the available literature, with special attention to recent international guidelines and expert recommendations, combined to authors’ clinical practice in large tertiary pediatric hospitals and will provide concise and practical information for the use of low-molecular weight heparin in childhood and infancy in a sort of “answering frequently asked questions.

    Raman Fingerprints of Atomically Precise Graphene Nanoribbons.

    Get PDF
    Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.We acknowledge funding from: the Alexander von Humboldt Foundation in the framework of the Sofja Kovalevskaja Award, endowed by the Federal Ministry for Education and Research of Germany; the ESF project GOSPEL (Ref. No. 09-EuroGRAPHENE-FP-001); the European Research Council (grant NOC-2D, NANOGRAPH, and Hetero2D); the Italian Ministry of Research through the national projects PRIN-GRAF (Grant No. 20105ZZTSE) and FIRB-FLASHit (Grant No. RBFR12SWOJ); the DFG Priority Program SPP 1459; the Graphene Flagship (Ref. No. CNECT-ICT-604391); the EU project MoQuaS; EPSRC Grants (EP/K01711X/1, EP/K017144/1); the EU grant GENIUS; a Royal Society Wolfson Research Merit Award. Computer time was granted by PRACE at the CINECA Supercomputing Center (Grant No. PRA06 1348), and by the Center for Functional Nanomaterials at Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract number DE-SC0012704.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.nanolett.5b0418

    Diagnostic Approach for the Differentiation of the Pandemic Influenza A(H1N1)v Virus from Recent Human Influenza Viruses by Real-Time PCR

    Get PDF
    BACKGROUND: The current spread of pandemic influenza A(H1N1)v virus necessitates an intensified surveillance of influenza virus infections worldwide. So far, in many laboratories routine diagnostics were limited to generic influenza virus detection only. To provide interested laboratories with real-time PCR assays for type and subtype identification, we present a bundle of PCR assays with which any human influenza A and B virus can be easily identified, including assays for the detection of the pandemic A(H1N1)v virus. PRINCIPAL FINDINGS: The assays show optimal performance characteristics in their validation on plasmids containing the respective assay target sequences. All assays have furthermore been applied to several thousand clinical samples since 2007 (assays for seasonal influenza) and April 2009 (pandemic influenza assays), respectively, and showed excellent results also on clinical material. CONCLUSIONS: We consider the presented assays to be well suited for the detection and subtyping of circulating influenza viruses

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations

    An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star

    Get PDF
    Although several thousands of exoplanets have now been detected and characterized, observational biases have led to a paucity of long-period, low-mass exoplanets with measured masses and a corresponding lag in our understanding of such planets. In this paper we report the mass estimation and characterization of the long-period exoplanet Kepler-538b. This planet orbits a Sun-like star (V = 11.27) with M_* = 0.892 +/- (0.051, 0.035) M_sun and R_* = 0.8717 +/- (0.0064, 0.0061) R_sun. Kepler-538b is a 2.215 +/- (0.040, 0.034) R_earth sub-Neptune with a period of P = 81.73778 +/- 0.00013 d. It is the only known planet in the system. We collected radial velocity (RV) observations with HIRES on Keck I and HARPS-N on the TNG. We characterized stellar activity by a Gaussian process with a quasi-periodic kernel applied to our RV and cross correlation function full width at half maximum (FWHM) observations. By simultaneously modeling Kepler photometry, RV, and FWHM observations, we found a semi-amplitude of K = 1.68 +/- (0.39, 0.38) m s^-1 and a planet mass of M_p = 10.6 +/- (2.5, 2.4) M_earth. Kepler-538b is the smallest planet beyond P = 50 d with an RV mass measurement. The planet likely consists of a significant fraction of ices (dominated by water ice), in addition to rocks/metals, and a small amount of gas. Sophisticated modeling techniques such as those used in this paper, combined with future spectrographs with ultra high-precision and stability will be vital for yielding more mass measurements in this poorly understood exoplanet regime. This in turn will improve our understanding of the relationship between planet composition and insolation flux and how the rocky to gaseous transition depends on planetary equilibrium temperature

    Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities

    Get PDF
    Radial velocity (RV) searches for Earth-mass exoplanets in the habitable zone around Sun-like stars are limited by the effects of stellar variability on the host star. In particular, suppression of convective blueshift and brightness inhomogeneities due to photospheric faculae/plage and starspots are the dominant contribution to the variability of such stellar RVs. Gaussian process (GP) regression is a powerful tool for statistically modeling these quasi-periodic variations. We investigate the limits of this technique using 800 days of RVs from the solar telescope on the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) spectrograph. These data provide a well-sampled time series of stellar RV variations. Into this data set, we inject Keplerian signals with periods between 100 and 500 days and amplitudes between 0.6 and 2.4 m s1^{-1}. We use GP regression to fit the resulting RVs and determine the statistical significance of recovered periods and amplitudes. We then generate synthetic RVs with the same covariance properties as the solar data to determine a lower bound on the observational baseline necessary to detect low-mass planets in Venus-like orbits around a Sun-like star. Our simulations show that discovering planets with a larger mass (\sim 0.5 m s1^{-1}) using current-generation spectrographs and GP regression will require more than 12 yr of densely sampled RV observations. Furthermore, even with a perfect model of stellar variability, discovering a true exo-Venus (\sim 0.1 m s1^{-1}) with current instruments would take over 15 yr. Therefore, next-generation spectrographs and better models of stellar variability are required for detection of such planets

    Significant Impact of Sequence Variations in the Nucleoprotein on CD8 T Cell-Mediated Cross-Protection against Influenza A Virus Infections

    Get PDF
    Background: Memory CD8 T cells to influenza A viruses are widely detectable in healthy human subjects and broadly cross-reactive for serologically distinct influenza A virus subtypes. However, it is not clear to what extent such pre-existing cellular immunity can provide cross-subtype protection against novel emerging influenza A viruses. Methodology/Principal: Findings We show in the mouse model that naturally occurring sequence variations of the conserved nucleoprotein of the virus significantly impact cross-protection against lethal disease in vivo. When priming and challenge viruses shared identical sequences of the immunodominant, protective NP366/Db epitope, strong cross-subtype protection was observed. However, when they did not share complete sequence identity in this epitope, cross-protection was considerably reduced. Contributions of virus-specific antibodies appeared to be minimal under these circumstances. Detailed analysis revealed that the magnitude of the memory CD8 T cell response triggered by the NP366/Db variants was significantly lower than those triggered by the homologous NP366/Db ligand. It appears that strict specificity of a dominant public TCR to the original NP366/Db ligand may limit the expansion of cross-reactive memory CD8 T cells to the NP366/Db variants. Conclusions/Significance: Pre-existing CD8 T cell immunity may provide substantial cross-protection against heterosubtypic influenza A viruses, provided that the priming and the subsequent challenge viruses share the identical sequences of the immunodominant, protective CTL epitopes

    The role of rigidity in adaptive and maladaptive families assessed by FACES IV: the points of view of adolescents

    Get PDF
    Previous studies using Olson’s Circumplex Model and FACES IV, the self-report assessing family functioning, did not clarify the role of rigidity, a dimension of this model. Rigidity emerged as ambiguous: it was considered either as a functional or as a dysfunctional dimension. Building upon the results of previous studies, we provided a contribution intended to disambiguate the role of rigidity considering adolescents’ perceptions and using a non-a priori classification analysis. 320 Italian adolescents (13–21 years) participated in this study and responded to a questionnaire containing scales of the study variables. A latent class analysis was performed to identify the association of rigidity with the other dimensions of Olson’s model and with indicators of adaptive family functioning in adolescence: parental monitoring and family satisfaction. We found six clusters corresponding to family typologies and having different levels of functioning. Rigidity emerged as adaptive in the typologies named rigidly balanced and flexibly oscillating; it was associated with positive dimensions of family functioning, i.e. flexibility, cohesion, parental monitoring, and high levels of family satisfaction. Differently, when rigidity was associated with disengagement, low cohesion and flexibility, and lack of parental supervision, emerged as maladaptive. This was the case of two typologies: the rigidly disengaged and the chaotically disengaged. Adolescents of these families reported the lowest levels of satisfaction. In the two last typologies, the flexibly chaotic and the cohesively disorganized, rigidity indicated a mid-range functionality as these families were characterized by emotional connectedness but lack of containment. Clinical implications are discussed
    corecore