2,015 research outputs found

    Computation of the para-pseudoinverse for oversampled filter banks: Forward and backward Greville formulas

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Frames and oversampled filter banks have been extensively studied over the past few years due to their increased design freedom and improved error resilience. In frame expansions, the least square signal reconstruction operator is called the dual frame, which can be obtained by choosing the synthesis filter bank as the para-pseudoinverse of the analysis bank. In this paper, we study the computation of the dual frame by exploiting the Greville formula, which was originally derived in 1960 to compute the pseudoinverse of a matrix when a new row is appended. Here, we first develop the backward Greville formula to handle the case of row deletion. Based on the forward Greville formula, we then study the computation of para-pseudoinverse for extended filter banks and Laplacian pyramids. Through the backward Greville formula, we investigate the frame-based error resilient transmission over erasure channels. The necessary and sufficient condition for an oversampled filter bank to be robust to one erasure channel is derived. A postfiltering structure is also presented to implement the para-pseudoinverse when the transform coefficients in one subband are completely lost

    Capillary pressure may predict preclinical changes in the eye

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordAIMS/HYPOTHESIS: Microvascular dysfunction is associated with end-organ damage. Macular oedema is an important component of diabetic retinopathy. Macular thickness can be accurately quantified by optical coherence tomography (OCT), enabling accurate assessment of the macular prior to clinically apparent abnormalities. We investigated whether macular (fovea) thickness in non-diabetic individuals is related to the microvascular variables controlling fluid filtration across a blood vessel wall, in particular capillary pressure and the microvascular filtration capacity (Kf). METHODS: We recruited 50 non-diabetic individuals (25 men, 25 women; age range: 26-78 years; BMI range: 20-46 kg/m(2)). Fovea thickness was assessed by OCT. Microvascular assessments included: finger nailfold capillary pressure; Kf; microvascular structural assessments, i.e. skin vasodilatory capacity, minimum vascular resistance (MVR) and microvascular distensibility; and endothelial function. RESULTS: At 214.6 (19.9) microm (mean [SD]), fovea thickness was within normal range. Capillary pressure, adjusted for BMI, was associated with fovea thickness (standardised beta 0.573, p = 0.006, linear regression). Fovea thickness was not associated with Kf, microvascular structural assessments or endothelial function. Capillary pressure was still associated with fovea thickness when adjusted for microvascular variables (Kf, vasodilatory capacity, MVR, microvascular distensibility or endothelial function), or for risk factors for diabetes (systemic blood pressure, insulin sensitivity, inflammation, glycaemic status and lipids) and age. CONCLUSIONS/INTERPRETATION: Capillary pressure, a key determinant of movement of fluid across a blood vessel wall, is associated with fovea thickness in non-diabetic individuals. This suggests that with regard to potential preventative or therapeutic targets, attention should be directed at the mechanisms determining retinal microvascular pressure.Diabetes UKNational Institute for Health Research (NIHR

    Understanding drinking among midlife men in the United Kingdom: A systematic review of qualitative studies

    Get PDF
    Objectives This study reviews qualitative research into the sociocultural meanings and subjective experiences that midlife men in the United Kingdom (UK) associate with their drinking. In the UK, average weekly alcohol consumption is highest among midlife men, and they are disproportionately affected by alcohol harm. There is increasing recognition that public health messages to support behaviour change must be based on an in-depth understanding of drinking motivations and experiences. Study design and Methods Systematic literature review of studies exploring motivations for and experiences of drinking among UK men aged 45-60 using qualitative methodology. Medline, PsycINFO and the Social Science Citation Index were used, along with manual searches of key journals, Google searches and a call for evidence. The Critical Appraisal Skills Programme tool was used to quality-assess papers. Thematic synthesis was used to combine and analyse the data. Results From 5,172 titles and abstracts (1995-2018), 11 publications were included, representing 6 unique studies. Five themes were identified: ‘Drinking Motivations’; ‘Drinking Justifications’; ‘Drinking Strategies and Control’; ‘Social Norms and Identity’ and ‘Harm’. Motivations for drinking among midlife men were associated with relaxation, socialising and maintenance of male friendships. They justified drinking as a choice and emphasised their ability to meet responsibilities, which they contrasted with ‘problem drinkers'. Social norms governed drinking behaviours as an expression of masculinity. Conclusion This review highlights the significance of the meanings and social importance of alcohol consumption among midlife men. Interventions using information and guidance should consider these when aiming to effectively influence the way this group drinks

    Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation

    Get PDF
    Small RNAs (sRNA), including microRNAs (miRNA) and small interfering RNAs (siRNA), are produced abundantly in plants and animals and function in regulating gene expression or in defense against virus or viroid infection. Analysis of siRNA profiles upon virus infection in plant may allow for virus identification, strain differentiation, and de novo assembly of virus genomes. In the present study, four suspected virus-infected tomato samples collected in the U.S. and Mexico were used for sRNA library construction and deep sequencing. Each library generated between 5–7 million sRNA reads, of which more than 90% were from the tomato genome. Upon in-silico subtraction of the tomato sRNAs, the remaining highly enriched, virus-like siRNA pools were assembled with or without reference virus or viroid genomes. A complete genome was assembled for Potato spindle tuber viroid (PSTVd) using siRNA alone. In addition, a near complete virus genome (98%) also was assembled for Pepino mosaic virus (PepMV). A common mixed infection of two strains of PepMV (EU and US1), which shared 82% of genome nucleotide sequence identity, also could be differentially assembled into their respective genomes. Using de novo assembly, a novel potyvirus with less than 60% overall genome nucleotide sequence identity to other known viruses was discovered and its full genome sequence obtained. Taken together, these data suggest that the sRNA deep sequencing technology will likely become an efficient and powerful generic tool for virus identification in plants and animals

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    Tradable credit scheme for rush hour travel choice with heterogeneous commuters

    Get PDF
    This article proposes a tradable credit scheme for managing commuters travel choices. The scheme considers bottleneck congestion and modal split in a competitive highway-transit network with heterogeneous commuters who are distinguished by their valuation of travel time. The scheme charges all auto travelers who pass the bottleneck during a peak-time window in the form of mobility credits. Those who avoid the peak-time window, by either traveling outside the peak-time window or switching to the transit mode, may be rewarded credits. An artificial market is created so that the travelers may trade these credits with each other. We formulate the credit price and the rewarded and charged credits under tradable credit scheme. Our analyses indicate that the optimal tradable credit scheme can achieve nearly 40% efficiency gains depending on the level of commuters heterogeneity. In addition, this scheme distributes the benefits among all the commuters directly through the credit trading. Our results suggest that in assessing the efficiency of tradable credit scheme, it is important to take into account the commuters heterogeneity. Numerical experiments are conducted to examine the sensitivity of tradable credit scheme designs to various system parameters

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
    corecore