437 research outputs found

    Umbilical Cord Mercury Concentration as Biomarker of Prenatal Exposure to Methylmercury

    Get PDF
    Biomarkers are often applied to assess prenatal exposure to methylmercury in research and surveillance. In a prospective study in the Faroe Islands, the main exposure biomarkers were the mercury concentrations in cord blood and maternal hair obtained at parturition. We have now supplemented these exposure biomarkers with mercury analyses of umbilical cord tissue from 447 births. In particular, when expressed in relation to the dry weight of the tissue, the cord mercury concentration correlated very well with that in cord blood. Structural equation model analysis showed that these two biomarkers have average total imprecision of about 30%, which is much higher than the laboratory error. The imprecision of the dry-weight–based concentration was lower than that of the wet-weight–based parameter, and it was intermediate between those of the cord blood and the hair biomarkers. In agreement with this finding, regression analyses showed that the dry-weight cord mercury concentration was almost as good a predictor of methylmercury-associated neuropsychologic deficits at 7 years of age as was the cord-blood mercury concentration. Cord mercury analysis can therefore be used as a valid measure of prenatal methylmercury exposure, but appropriate adjustment for the imprecision should be considered

    Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium <it>Dichelobacter nodosus</it>. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but <it>D. nodosu</it>s should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of <it>D. nodosus </it>and to compare its performance with culturing and conventional PCR.</p> <p>Methods</p> <p>A <it>D. nodosus-</it>specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly.</p> <p>Results</p> <p>The developed assay had a detection limit of 3.9 fg of <it>D. nodosus </it>genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the <it>D. nodosus </it>genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR.</p> <p>Conclusions</p> <p>The developed real-time PCR assay has good specificity and sensitivity for detection of <it>D. nodosus</it>, and the results are easy to interpret. The method is less time-consuming than either culturing or conventional PCR.</p

    Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings

    Get PDF
    Background: In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. Results: Cellulase recycling was analyzed on Recycled Paper Sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 ºC), nevertheless its performance at moderate temperatures (40ºC) was slightly superior to other cocktails (ACCELLERASE®1500 and Cellic®CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88 % of final activity at the end of the process. A Central Composite Design studied the influence of solids concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/ gcellulose had no significant effect on sugars production, suggesting that 22 % solids and 20 FPU/gcellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain steady levels of enzyme activity with only 50 % of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81 %) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4 and 3.8 fold, respectively). Conclusions: Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.This work had the fnancial support of the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the MultiBiorefnery project (POCI-01-0145-FEDER-016403). Furthermore, FCT equally supported the Ph.D. grant to DG (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is \sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of \sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of \sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    Estrogen-like activity of seafood related to environmental chemical contaminants

    Get PDF
    BACKGROUND: A wide variety of environmental pollutants occur in surface waters, including estuarine and marine waters. Many of these contaminants are recognised as endocrine disrupting chemicals (EDCs) which can adversely affect the male and female reproductive system by binding the estrogen receptor and exhibiting hormone-like activities. In this study the estrogenic activity of extracts of edible marine organisms for human consumption from the Mediterranean Sea was assayed. METHODS: Marine organisms were collected in two different areas of the Mediterranean Sea. The estrogenic activity of tissues was assessed using an in vitro yeast reporter gene assay (S. cerevisiae RMY 326 ER-ERE). Concentrations of polychlorinated biphenyls (PCBs) (congeners 28, 52, 101, 118, 138, 153, 180) in fish tissue was also evaluated. RESULTS: Thirty-eight percent of extracts showed a hormone-like activity higher than 10% of the activity elicited by 10 nM 17b-estradiol (E2) used as control. Total PCB concentrations ranged from 0.002 up to 1.785 ng/g wet weight. Chemical analyses detected different levels of contamination among the species collected in the two areas, with the ones collected in the Adriatic Sea showing concentrations significantly higher than those collected in the Tyrrhenian Sea (p < 0.01). CONCLUSION: The more frequent combination of chemicals in the samples that showed higher estrogenic activity was PCB 28, PCB 101, PCB 153, PCB 180. The content of PCBs and estrogenic activity did not reveal any significant correlation

    The EBLM project: VI. Mass and radius of five low-mass stars in F+M binaries discovered by the WASP survey

    Get PDF
    Some M-dwarfs around F-/G-type stars have been measured to be hotter and larger than predicted by stellar evolution models. Inconsistencies between observations and models need to be addressed with more mass, radius, and luminosity measurements of low-mass stars to test and refine evolutionary models. Our aim is to measure the masses, radii and ages of the stars in five low-mass eclipsing binary systems discovered by the WASP survey. We used WASP photometry to establish eclipse-time ephemerides and to obtain initial estimates for the transit depth and width. Radial velocity measurements were simultaneously fitted with follow-up photometry to find the best-fitting orbital solution. This solution was combined with measurements of atmospheric parameters to interpolate evolutionary models and estimate the mass of the primary star, and the mass and radius of the M-dwarf companion. We assess how the best fitting orbital solution changes if an alternative limb-darkening law is used and quantify the systematic effects of unresolved companions. We also gauge how the best-fitting evolutionary model changes if different values are used for the mixing length parameter and helium enhancement. We report the mass and radius of five M-dwarfs and find little evidence of inflation with respect to evolutionary models. The primary stars in two systems are near the “blue hook” stage of their post sequence evolution, resulting in two possible solutions for mass and age. We find that choices in helium enhancement and mixing-length parameter can introduce an additional 3−5% uncertainty in measured M-dwarf mass. Unresolved companions can introduce an additional 3−8% uncertainty in the radius of an M-dwarf, while the choice of limb-darkening law can introduce up to an additional 2% uncertainty. The choices in orbital fitting and evolutionary models can introduce significant uncertainties in measurements of physical properties of such systems

    The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?

    Get PDF
    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts

    Accurate masses and radii of normal stars: modern results and applications

    Get PDF
    This paper presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and alpha Centauri) that satisfy our criterion that the mass and radius of both stars be known to 3% or better. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. We discuss the use of this information for testing models of stellar evolution. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff), log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to better than 3%, but without fundamental radius determinations (except alpha Aur). We discuss the prospects for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and Astrophysics Review. Ascii versions of the tables will appear in the online version of the articl

    Scrapheap Challenge: A novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages

    Get PDF
    Highly fragmented and morphologically indistinct fossil bone is common in archaeological and paleontological deposits but unfortunately it is of little use in compiling faunal assemblages. The development of a cost-effective methodology to taxonomically identify bulk bone is therefore a key challenge. Here, an ancient DNA methodology using high-throughput sequencing is developed to survey and analyse thousands of archaeological bones from southwest Australia. Fossils were collectively ground together depending on which of fifteen stratigraphical layers they were excavated from. By generating fifteen synthetic blends of bulk bone powder, each corresponding to a chronologically distinct layer, samples could be collectively analysed in an efficient manner. A diverse range of taxa, including endemic, extirpated and hitherto unrecorded taxa, dating back to c.46,000 years BP was characterized. The method is a novel, cost-effective use for unidentifiable bone fragments and a powerful molecular tool for surveying fossils that otherwise end up on the taxonomic “scrapheap”
    corecore