254 research outputs found

    Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies

    Get PDF
    We study the chemo-dynamical evolution of elliptical galaxies and their hot X-ray emitting gas using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of heavy element abundance patterns in both the stellar and gas components of galaxies. X-ray spectra of the hot gas are constructed via the use of the vmekal plasma model, and analysed using XSPEC with the XMM EPN response function. Simulation end-products are quantitatively compared with the observational data in both the X-ray and optical regime. We find that radiative cooling is important to interpret the observed X-ray luminosity, temperature, and metallicity of the interstellar medium of elliptical galaxies. However, this cooled gas also leads to excessive star formation at low redshift, and therefore results in underlying galactic stellar populations which are too blue with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy Connection - The Distribution of Baryons at z=0", ed. M. Putman & J. Rosenberg; High resolution version is available at http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm

    The nature of the variable millimetre–selected AGN in the brightest cluster galaxy of Abell 851

    Get PDF
    We present the detection of a bright 3 mm continuum source in the brightest cluster galaxy (BCG) in Abell 0851 (z = 0.411) with the NOrthern Extended Millimeter Array (NOEMA). When this detection is compared to other multifrequency observations across 21cm– 100ÎŒm, including new Arcminute Microkelvin Imager 15 GHz observations, we find evidence for a relatively flat, variable core source associated with the BCG. The radio power and amplitude of variability observed in this galaxy is consistent with the cores in lower redshift BCGs in X-ray–selected clusters, and the flat mm–cm spectrum is suggestive of the BCG being a low-luminosity active galactic nucleus archetype. The discovery of this system could provide a basis for a long-term study of the role of low-luminosity radio mode ‘regulatory’ feedback in massive clusters

    Driving massive molecular gas flows in central cluster galaxies with AGN feedback

    Get PDF
    We present an analysis of new and archival ALMA observations of molecular gas in 12 central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in these systems span 109−−1011M⊙⁠, far more than most gas-rich galaxies. ALMA images reveal a distribution of morphologies from filamentary to disc-dominated structures. Circumnuclear discs on kiloparsec scales appear rare. In most systems, half to nearly all of the molecular gas lies in filamentary structures with masses of a few ×108--10M⊙ that extend radially several to several tens of kpc. In nearly all cases the molecular gas velocities lie far below stellar velocity dispersions, indicating youth, transience, or both. Filament bulk velocities lie far below the galaxy’s escape and free-fall speeds indicating they are bound and being decelerated. Most extended molecular filaments surround or lie beneath radio bubbles inflated by the central active galactic nuclei (AGNs). Smooth velocity gradients found along the filaments are consistent with gas flowing along streamlines surrounding these bubbles. Evidence suggests most of the molecular clouds formed from low entropy X-ray gas that became thermally unstable and cooled when lifted by the buoyant bubbles. Uplifted gas will stall and fall back to the galaxy in a circulating flow. The distribution in morphologies from filament to disc-dominated sources therefore implies slowly evolving molecular structures driven by the episodic activity of the AGNs

    Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety

    Get PDF
    We have produced for the first time a detailed velocity map of the giant filamentary nebula surrounding NGC 1275, the Perseus cluster’s brightest galaxy, and revealed a previously unknown rich velocity structure across the entire nebula. These new observations were obtained with the optical imaging Fourier transform spectrometer SITELLE at CFHT. With its wide field of view ( ∌11 arcmin × 11 arcmin), SITELLE is the only integral field unit spectroscopy instrument able to cover the 80 kpc  ×  55 kpc ( 3.8 arcmin × 2.6 arcmin) large nebula in NGC 1275. Our analysis of these observations shows a smooth radial gradient of the [N II]λ6583/H α line ratio, suggesting a change in the ionization mechanism and source across the nebula. The velocity map shows no visible general trend or rotation, indicating that filaments are not falling uniformly onto the galaxy, nor being uniformly pulled out from it. Comparison between the physical properties of the filaments and Hitomi measurements of the X-ray gas dynamics in Perseus is also explored

    The Evolution of X-ray Clusters of Galaxies

    Get PDF
    Considerable progress has been made over the last decade in the study of the evolutionary trends of the population of galaxy clusters in the Universe. In this review we focus on observations in the X-ray band. X-ray surveys with the ROSAT satellite, supplemented by follow-up studies with ASCA and Beppo-SAX, have allowed an assessment of the evolution of the space density of clusters out to z~1, and the evolution of the physical properties of the intra-cluster medium out to z~0.5. With the advent of Chandra and Newton-XMM, and their unprecedented sensitivity and angular resolution, these studies have been extended beyond redshift unity and have revealed the complexity of the thermodynamical structure of clusters. The properties of the intra-cluster gas are significantly affected by non-gravitational processes including star formation and Active Galactic Nucleus (AGN) activity. Convincing evidence has emerged for modest evolution of both the bulk of the X-ray cluster population and their thermodynamical properties since redshift unity. Such an observational scenario is consistent with hierarchical models of structure formation in a flat low density universe with Omega_m=0.3 and sigma_8=0.7-0.8 for the normalization of the power spectrum. Basic methodologies for construction of X-ray-selected cluster samples are reviewed and implications of cluster evolution for cosmological models are discussed.Comment: 40 pages, 15 figures. Full resolution figures can be downloaded from http://www.eso.org/~prosati/ARAA

    The Hot and Energetic Universe: AGN feedback in galaxy clusters and groups

    Get PDF
    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. The large collecting area, excellent spectral resolution and high spatial resolution of Athena+ will provide the breakthrough diagnostic ability necessary to develop this understanding, via: (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. Athena+ will therefore determine for the first time how jet energy is dissipated and distributed in group and cluster gas, and how a feedback loop operates in group/cluster cores to regulate gas cooling and AGN fuelling. Athena+ will also establish firmly the cumulative impact of powerful radio galaxies on the evolution of baryons from the epoch of group/cluster formation to the present day

    The quasar feedback survey: discovering hidden Radio-AGN and their connection to the host galaxy ionized gas

    Get PDF
    We present the first results from the Quasar Feedback Survey, a sample of 42 z 1042.1 ergs s−1) with moderate radio luminosities (i.e. L1.4GHz > 1023.4 W Hz−1; median L1.4GHz = 5.9 × 1023 W Hz−1). Using high spatial resolution (∌0.3–1 arcsec), 1.5–6 GHz radio images from the Very Large Array, we find that 67 per cent of the sample have spatially extended radio features on ∌1–60 kpc scales. The radio sizes and morphologies suggest that these may be lower radio luminosity versions of compact, radio-loud AGNs. By combining the radio-to-infrared excess parameter, spectral index, radio morphology, and brightness temperature, we find radio emission in at least 57 per cent of the sample that is associated with AGN-related processes (e.g. jets, quasar-driven winds, or coronal emission). This is despite only 9.5–21 per cent being classified as radio-loud using traditional criteria. The origin of the radio emission in the remainder of the sample is unclear. We find that both the established anticorrelation between radio size and the width of the [O III] line, and the known trend for the most [O III] luminous AGNs to be associated with spatially extended radio emission, also hold for our sample of moderate radio luminosity quasars. These observations add to the growing evidence of a connection between the radio emission and ionized gas in quasar host galaxies. This work lays the foundation for deeper investigations into the drivers and impact of feedback in this unique sample

    The Hot and Energetic Universe: AGN feedback in galaxy clusters and groups

    Get PDF
    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. The large collecting area, excellent spectral resolution and high spatial resolution of Athena+ will provide the breakthrough diagnostic ability necessary to develop this understanding, via: (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. Athena+ will therefore determine for the first time how jet energy is dissipated and distributed in group and cluster gas, and how a feedback loop operates in group/cluster cores to regulate gas cooling and AGN fuelling. Athena+ will also establish firmly the cumulative impact of powerful radio galaxies on the evolution of baryons from the epoch of group/cluster formation to the present day

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The Îł\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht
    • 

    corecore