18 research outputs found

    Relations between assemblages of carpological remains and modern vegetation in a shallow reservoir in southern Poland

    Get PDF
    This paper explores relations between assemblages of carpological remains and vegetation in and around a small, shallow reservoir in southern Poland. The study was conducted from 2006 to 2008. Quantity and distribution of species in the reservoir were recorded annually during the growing season. In October 2008, 40 samples of surface sediment (top 2 cm) were collected along transects at 10 m intervals. Samples of 100 cm3 were prepared for analysis of plant macroremains. Assemblages of carpological remains generally reflect local vegetation well. In some cases, however, even analysis of numerous samples failed to fully capture the species composition or reflect plant ratios in the parent phytocenosis. Reasons for this include factors that affect seed production, transport and fossilization, which differ among species. Among the best-represented macroremains were plants of the rush phytocenosis. In analysed samples, macroremains of 68.8 % of extant rushes were identified. Sixty percent of submerged and floating-leaf taxa were found in carpological samples, whereas 26.7 % of the trees and bushes were represented in sediment deposits. Species composition of phytocenoses in the reservoir and in surrounding areas was best reflected by macroremains from the nearby reed bed. Numbers of diaspores of Mentha aquatica, Hippuris vulgaris and Carex reflected well their relative abundance in phytocenoses. Chara sp., Juncus inflexus and Eupatorium cannabinum were overrepresented, whereas Typha latifolia and Sparganium minimum were poorly represented in relation to contemporary plant cover. There were no diaspores of Phragmites australis, which dominates the contemporary reed bed. Besides the shape of a reservoir, the key factor influencing diaspore numbers is distribution of plant cover. In many cases, single diaspores (Potentilla erecta, Myosotis scorpioides, Lythrum salicaria, Scutellaria galericulata), or higher concentrations (Hippuris vulgaris, Mentha aquatica, Eleocharis palustris, Schoenoplectus tabernaemontani, Chara sp.) reflected well the location of parent vegetation. The findings indicate that carpological remains in sediments can be an important source of information about plants in and around lakes. They generally reflect well local vegetation and in some cases may be used to identify taxa that dominated in the past

    Algal mats transport diaspores and carpological remains in shallow lakes

    Get PDF
    Algal mats in lakes and reservoirs can transport diaspores and carpological remains of plants, and thus may influence the creation of taphocoenoses. In 2012, I quantified carpological remains in two types of algal mats from a small reservoir in southern Poland. Mats formed by filamentous algae participate primarily in the original transport of diaspores, and can influence their concentration and facilitate their migration, mainly between the shores of the reservoir. Diatom mats partake primarily in diaspore redeposition, but can also cause their dispersal between the shore zone and the central part of the reservoir. This research demonstrates that mats built by diatoms contain far more remains and are more biologically diverse than filamentous algal mats. Movement of carpological remains observed in both types of algal mats points to their role in the formation of taphocoenoses and suggests that algal mats must be considered when interpreting macrofossil records

    Cooling and changing seasonality in the Southern Alps, New Zealand during the Antarctic Cold Reversal

    No full text
    A comprehensively 14C AMS dated pollen and chironomid record from Boundary Stream Tarn provides the first chironomid-derived temperature reconstruction to quantify temperature change during Lateglacial times (17,500–10,000 cal yr BP) in the Southern Alps, New Zealand. The records indicate a ca 1000-year disruption to the Lateglacial warming trend and an overall cooling consistent with the Antarctic Cold Reversal (ACR). The main interval of chironomid-inferred summer temperature depression (2–3 °C) lasted about 700 years during the ACR. Following this cooling event, both proxies indicate a warming step to temperatures slightly cooler than present during the Younger Dryas chronozone (12,900–11,500 cal yr BP). These results highlight a direct linkage between Antarctica and mid-latitude terrestrial climate systems and the largely asynchronous nature of the interhemispheric climate system during the last glacial transition. The greater magnitude of temperature changes shown by the chironomid record is attributed to the response of the proxies to differences in seasonal climate with chironomids reflecting summer temperature and vegetation more strongly controlled by duration of winter or by minimum temperatures. These differences imply stronger seasonality at times during the Lateglacial, which may explain some of the variability between other paleoclimate records from New Zealand and have wider implications for understanding differences between proxy records for abrupt climate change

    A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand

    No full text
    The Kawakawa/Oruanui tephra (KOT) is a key chronostratigraphic marker in terrestrial and marine deposits of the New Zealand (NZ) sector of the southwest Pacific. Erupted early during the Last Glacial Maximum (LGM), the wide distribution of the KOT enables inter-regional alignment of proxy records and facilitates comparison between NZ climatic variations and those from well-dated records elsewhere. We present 22 new radiocarbon ages for the KOT from sites and materials considered optimal for dating, and apply Bayesian statistical methods via OxCal4.1.7 that incorporate stratigraphic information to develop a new age probability model for KOT. The revised calibrated age, ±2 standard deviations, for the eruption of the KOT is 25,360 ± 160 cal yr BP. The age revision provides a basis for refining marine reservoir ages for the LGM in the southwest Pacific. © 2012

    Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains?

    No full text
    How representative of the whole-lake fossil assemblage are analyses from a single sediment core taken in the centre of a small lake? This question was addressed in five shallow Norwegian lakes that ranged in location from low-altitude, boreal-deciduous forest to mid-alpine environments. Surface-sediment samples were taken from the deepest part of each lake and in two transects running from the lake centre to shore, and analysed for mites, chironomids, and plant remains. Ordination techniques summarised patterns of variation between and within lakes. Correlations between whole-lake assemblages and water depth and sediment organic content (loss-on-ignition) were investigated. Representativeness of each sample of the whole-lake assemblage was determined by comparing Principal Components Analysis scores of the original data with those of Monte Carlo-simulated data sets, using the actual data as constraints in the simulations. The majority of samples are representative of the whole-lake assemblages. Littoral samples, however, are most frequently unrepresentative or poorly representative samples. Water depth is an important controlling variable. A sediment core from the lake centre has the highest probability of representing the whole-lake assemblage. It may, however, also yield the lowest concentrations of terrestrial remains. A sediment core from the slope is slightly more likely to be unrepresentative of the total plant macrofossil assemblage, but generally has higher concentrations of terrestrial remains. These site differences should be considered when choosing a core location. Overall, the three fossil types are deposited in similar patterns. Therefore they can be satisfactorily analysed using a single core
    corecore