167 research outputs found

    Enantioselective Gas Chromatographic Analysis of Cyclopropane Derivatives

    Get PDF
    Chirasil-β-Dex was used as chiral stationary phase for the enantioselective gas chromatographic analysis of several new chiral cyclopropane derivatives. The GC method provides information about the chemical yields of the cyclopropane products, enantioselectivity, substrate specifity, and catalytic activity of the chiral catalysts used in the inter- and intra-molecular cyclopropanation reactions and avoids time-consuming work-up procedure

    Stereoselective HPLC assay of donepezil enantiomers with UV detection and its application to pharmacokinetics in rats

    Get PDF
    Abstract This investigation describes a new precise, sensitive and accurate stereoselective HPLC method for the simultaneous determination of donepezil enantiomers in tablets and plasma with enough sensitivity to follow its pharmacokinetics in rats up to 12 h after single oral dosing. Enantiomeric resolution was achieved on a cellulose tris (3,5-dimethylphenyl carbamate) column known as Chiralcel OD, with UV detection at 268 nm, and the mobile phase consisted of n-hexane, isopropanol and triethylamine (87:12.9:0.1). Using the chromatographic conditions described, donepezil enantiomers were well resolved with mean retention times of 12.8 and 16.3 min, respectively. Linear response (r > 0.994) was observed over the range of 0.05-2 g/ml of donepezil enantiomers, with detection limit of 20 ng/ml. The mean relative standard deviation (R.S.D.%) of the results of within-day precision and accuracy of the drug were ≤10%. There was no significant difference (p > 0.05) between inter-and intra-day studies for each enantiomers which confirmed the reproducibility of the assay method. The mean extraction efficiency was 92.6-93.2% of the enantiomers. The proposed method was found to be suitable and accurate for the quantitative determination of donepezil enantiomers in tablets. The assay method also shows good specificity to donepezil enantiomers, and it could be successfully applied to its pharmacokinetic studies and to therapeutic drug monitoring

    High Resolution Spectral Domain Optical Coherence Tomography (SD-OCT) in Multiple Sclerosis: The First Follow Up Study over Two Years

    Get PDF
    “Non-invasive, faster and less expensive than MRI” and “the eye is a window to the brain” are recent slogans promoting optical coherence tomography (OCT) as a new surrogate marker in multiple sclerosis (MS). Indeed, OCT allows for the first time a non-invasive visualization of axons of the central nervous system (CNS). Reduction of retina nerve fibre layer (RNFL) thickness was suggested to correlate with disease activity and duration. However, several issues are unclear: Do a few million axons, which build up both optic nerves, really resemble billions of CNS neurons? Does global CNS damage really result in global RNFL reduction? And if so, does global RNFL reduction really exist in all MS patients, and follow a slowly but steadily ongoing pattern? How can these (hypothesized) subtle global RNFL changes be reliably measured and separated from the rather gross RNFL changes caused by optic neuritis? Before generally being accepted, this interpretation needs further critical and objective validation.We prospectively studied 37 MS patients with relapsing remitting (n = 27) and secondary progressive (n = 10) course on two occasions with a median interval of 22.4±0.5 months [range 19–27]. We used the high resolution spectral domain (SD-)OCT with the Spectralis 3.5 mm circle scan protocol with locked reference images and eye tracking mode. Patients with an attack of optic neuritis within 12 months prior to the onset of the study were excluded.Although the disease was highly active over the observation period in more than half of the included relapsing remitting MS patients (19 patients/32 relapses) and the initial RNFL pattern showed a broad range, from normal to markedly reduced thickness, no significant changes between baseline and follow-up examinations could be detected.These results show that caution is required when using OCT for monitoring disease activity and global axonal injury in MS

    The Origins of Concentric Demyelination: Self-Organization in the Human Brain

    Get PDF
    Baló's concentric sclerosis is a rare atypical form of multiple sclerosis characterized by striking concentric demyelination patterns. We propose a robust mathematical model for Baló's sclerosis, sharing common molecular and cellular mechanisms with multiple sclerosis. A reconsideration of the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon led us to propose a chemotactic cellular model for this disease. Rings of demyelination appear as a result of self-organization processes, and closely mimic Baló lesions. According to our results, homogeneous and concentric demyelinations may be two different macroscopic outcomes of a single fundamental immune disorder. Furthermore, in chemotactic models, cellular aggressivity appears to play a central role in pattern formation

    Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review

    Get PDF
    More than 27 million tonnes of waste plastics are generated in Europe each year representing a considerable potential resource. There has been extensive research into the production of liquid fuels and aromatic chemicals from pyrolysis-catalysis of waste plastics. However, there is less work on the production of hydrogen from waste plastics via pyrolysis coupled with catalytic steam reforming. In this paper, the different reactor designs used for hydrogen production from waste plastics are considered and the influence of different catalysts and process parameters on the yield of hydrogen from different types of waste plastics are reviewed. Waste plastics have also been investigated as a source of hydrocarbons for the generation of carbon nanotubes via the chemical vapour deposition route. The influences on the yield and quality of carbon nanotubes derived from waste plastics are reviewed in relation to the reactor designs used for production, catalyst type used for carbon nanotube growth and the influence of operational parameters

    Pathogenic T cell responses against aquaporin 4

    Get PDF
    Inflammatory lesions in the central nervous system of patients with neuromyelitis optica are characterized by infiltration of T cells and deposition of aquaporin-4-specific antibodies and complement on astrocytes at the glia limitans. Although the contribution of aquaporin-4-specific autoantibodies to the disease process has been recently elucidated, a potential role of aquaporin-4-specific T cells in lesion formation is unresolved. To address this issue, we raised aquaporin-4-specific T cell lines in Lewis rats and characterized their pathogenic potential in the presence and absence of aquaporin-4-specific autoantibodies of neuromyelitis optica patients. We show that aquaporin-4-specific T cells induce brain inflammation with particular targeting of the astrocytic glia limitans and permit the entry of pathogenic anti-aquaporin-4-specific antibodies to induce NMO-like lesions in spinal cord and brain. In addition, transfer of aquaporin-4-specific T cells provoked mild (subclinical) myositis and interstitial nephritis. We further show that the expression of the conformational epitope, recognized by NMO patient-derived aquaporin-4-specific antibodies is induced in kidney cells by the pro-inflammatory cytokine gamma-interferon. Our data provide further support for the view that NMO lesions may be induced by a complex interplay of T cell mediated and humoral immune responses against aquaporin-4

    Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line

    Get PDF
    BACKGROUND: Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC) activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO) has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C) has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. METHODS: Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO(2 )from (14)C-labelled substrate, and polyamine levels were measured by HPLC. RESULTS: I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G(2)/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. CONCLUSION: While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative effect, although accumulation of spermine may cause cytotoxicity and contribute to cell death. The precise mechanism by which putrescine enhances the growth inhibitory effect of the agent remains to be elucidated, but does result in cells undergoing necrosis, possibly following accumulation in the G(2)/M phase of the cell cycle

    Poster display IV experimental and instrumentation

    Get PDF

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
    corecore