228 research outputs found

    The Communicability of Graphical Alternatives to Tabular Displays of Statistical Simulation Studies

    Get PDF
    Simulation studies are often used to assess the frequency properties and optimality of statistical methods. They are typically reported in tables, which may contain hundreds of figures to be contrasted over multiple dimensions. To assess the degree to which these tables are fit for purpose, we performed a randomised cross-over experiment in which statisticians were asked to extract information from (i) such a table sourced from the literature and (ii) a graphical adaptation designed by the authors, and were timed and assessed for accuracy. We developed hierarchical models accounting for differences between individuals of different experience levels (under- and post-graduate), within experience levels, and between different table-graph pairs. In our experiment, information could be extracted quicker and, for less experienced participants, more accurately from graphical presentations than tabular displays. We also performed a literature review to assess the prevalence of hard-to-interpret design features in tables of simulation studies in three popular statistics journals, finding that many are presented innumerately. We recommend simulation studies be presented in graphical form

    Bayesian optimization for materials design

    Full text link
    We introduce Bayesian optimization, a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian process regression, which allows predicting the performance of a new design based on previously tested designs. After providing a detailed introduction to Gaussian process regression, we introduce two Bayesian optimization methods: expected improvement, for design problems with noise-free evaluations; and the knowledge-gradient method, which generalizes expected improvement and may be used in design problems with noisy evaluations. Both methods are derived using a value-of-information analysis, and enjoy one-step Bayes-optimality

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed

    The Cosmology of Composite Inelastic Dark Matter

    Get PDF
    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte

    Recognising and reacting to angry and happy facial expressions: a diffusion model analysis.

    Get PDF
    Researchers have reported two biases in how people recognise and respond to angry and happy facial expressions: (1) a gender-expression bias (Becker et al. in J Pers Soc Psychol, 92(2):179-190, https://doi.org/10.1037/0022-3514.92.2.179 , 2007)-faster identification of male faces as angry and female faces as happy and (2) an approach-avoidance bias-faster avoidance of people who appear angry and faster approach responses people who appear happy (Heuer et al. in Behav Res The, 45(12):2990-3001, https://doi.org/10.1016/j.brat.2007.08.010 2007; Marsh et al. in Emotion, 5(1), 119-124, https://doi.org/10.1037/1528-3542.5.1.119 , 2005; Rotteveel and Phaf in Emotion 4(2):156-172, https://doi.org/10.1037/1528-3542.4.2.156 , 2004). The aim of the current research is to gain insight into the nature of such biases by applying the drift diffusion model to the results of an approach-avoidance task. Sixty-five participants (33 female) identified faces as either happy or angry by pushing and pulling a joystick. In agreement with the original study of this effect (Solarz 1960) there were clear participant gender differences-both the approach avoidance and gender-expression biases were larger in magnitude for female compared to male participants. The diffusion model results extend recent research (Krypotos et al. in Cogn Emot 29(8):1424-1444, https://doi.org/10.1080/02699931.2014.985635 , 2015) by indicating that the gender-expression and approach-avoidance biases are mediated by separate cognitive processes

    A response to Yu et al. "A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array", BMC Bioinformatics 2007, 8: 145

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yu et al. (BMC Bioinformatics 2007,8: 145+) have recently compared the performance of several methods for the detection of genomic amplification and deletion breakpoints using data from high-density single nucleotide polymorphism arrays. One of the methods compared is our non-homogenous Hidden Markov Model approach. Our approach uses Markov Chain Monte Carlo for inference, but Yu et al. ran the sampler for a severely insufficient number of iterations for a Markov Chain Monte Carlo-based method. Moreover, they did not use the appropriate reference level for the non-altered state.</p> <p>Methods</p> <p>We rerun the analysis in Yu et al. using appropriate settings for both the Markov Chain Monte Carlo iterations and the reference level. Additionally, to show how easy it is to obtain answers to additional specific questions, we have added a new analysis targeted specifically to the detection of breakpoints.</p> <p>Results</p> <p>The reanalysis shows that the performance of our method is comparable to that of the other methods analyzed. In addition, we can provide probabilities of a given spot being a breakpoint, something unique among the methods examined.</p> <p>Conclusion</p> <p>Markov Chain Monte Carlo methods require using a sufficient number of iterations before they can be assumed to yield samples from the distribution of interest. Running our method with too small a number of iterations cannot be representative of its performance. Moreover, our analysis shows how our original approach can be easily adapted to answer specific additional questions (e.g., identify edges).</p

    Retinoid-Induced Expression and Activity of an Immediate Early Tumor Suppressor Gene in Vascular Smooth Muscle Cells

    Get PDF
    Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE) located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β) in cultured smooth muscle cells (SMC) as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA) regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall

    Query Large Scale Microarray Compendium Datasets Using a Model-Based Bayesian Approach with Variable Selection

    Get PDF
    In microarray gene expression data analysis, it is often of interest to identify genes that share similar expression profiles with a particular gene such as a key regulatory protein. Multiple studies have been conducted using various correlation measures to identify co-expressed genes. While working well for small datasets, the heterogeneity introduced from increased sample size inevitably reduces the sensitivity and specificity of these approaches. This is because most co-expression relationships do not extend to all experimental conditions. With the rapid increase in the size of microarray datasets, identifying functionally related genes from large and diverse microarray gene expression datasets is a key challenge. We develop a model-based gene expression query algorithm built under the Bayesian model selection framework. It is capable of detecting co-expression profiles under a subset of samples/experimental conditions. In addition, it allows linearly transformed expression patterns to be recognized and is robust against sporadic outliers in the data. Both features are critically important for increasing the power of identifying co-expressed genes in large scale gene expression datasets. Our simulation studies suggest that this method outperforms existing correlation coefficients or mutual information-based query tools. When we apply this new method to the Escherichia coli microarray compendium data, it identifies a majority of known regulons as well as novel potential target genes of numerous key transcription factors

    Multitrait analysis of quantitative trait loci using Bayesian composite space approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multitrait analysis of quantitative trait loci can capture the maximum information of experiment. The maximum-likelihood approach and the least-square approach have been developed to jointly analyze multiple traits, but it is difficult for them to include multiple QTL simultaneously into one model.</p> <p>Results</p> <p>In this article, we have successfully extended Bayesian composite space approach, which is an efficient model selection method that can easily handle multiple QTL, to multitrait mapping of QTL. There are many statistical innovations of the proposed method compared with Bayesian single trait analysis. The first is that the parameters for all traits are updated jointly by vector or matrix; secondly, for QTL in the same interval that control different traits, the correlation between QTL genotypes is taken into account; thirdly, the information about the relationship of residual error between the traits is also made good use of. The superiority of the new method over separate analysis was demonstrated by both simulated and real data. The computing program was written in FORTRAN and it can be available for request.</p> <p>Conclusion</p> <p>The results suggest that the developed new method is more powerful than separate analysis.</p
    corecore