116 research outputs found

    Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus

    Get PDF
    Background: Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus. Methods: Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates. Results: On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol. Conclusion: Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus

    Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine.

    Get PDF
    BACKGROUND: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10. METHODS AND FINDINGS: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤ 2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates. CONCLUSIONS: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation

    FORG3D: Force-directed 3D graph editor for visualization of integrated genome scale data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomics research produces vast amounts of experimental data that needs to be integrated in order to understand, model, and interpret the underlying biological phenomena. Interpreting these large and complex data sets is challenging and different visualization methods are needed to help produce knowledge from the data.</p> <p>Results</p> <p>To help researchers to visualize and interpret integrated genomics data, we present a novel visualization method and bioinformatics software tool called FORG3D that is based on real-time three-dimensional force-directed graphs. FORG3D can be used to visualize integrated networks of genome scale data such as interactions between genes or gene products, signaling transduction, metabolic pathways, functional interactions and evolutionary relationships. Furthermore, we demonstrate its utility by exploring gene network relationships using integrated data sets from a <it>Caenorhabditis elegans </it>Parkinson's disease model.</p> <p>Conclusion</p> <p>We have created an open source software tool called FORG3D that can be used for visualizing and exploring integrated genome scale data.</p

    High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: an accurate and cost-effective SNP-based tool

    Get PDF
    The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation oinfo:eu-repo/semantics/publishedVersio

    Community-Based Outbreaks in Vulnerable Populations of Invasive Infections Caused by Streptococcus pneumoniae Serotypes 5 and 8 in Calgary, Canada

    Get PDF
    BACKGROUND: Outbreaks of invasive pneumococcal disease (IPD) typically occur within institutions. Beginning in 2005, we detected an increase in serotype (ST) 5 and ST8 IPD cases, predominantly in homeless persons living in an open community. METHODOLOGY/PRINCIPAL FINDINGS: CASPER (Calgary Area S. pneumoniae Epidemiology Research) surveillance study of all IPD (sterile site isolates) in our region (pop ~1,100,000). Interviews and chart reviews of all cases and all isolates phenotypically analyzed and selected isolated tested by multi-locus sequence typing (MLST). CONCLUSIONS/SIGNIFICANCE: During 2005-2007, 162 cases of ST5 IPD and 45 cases of ST8 IPD were identified. The isolates demonstrated phenotypic and genotypic clonality. The ST5 isolates were sequence type (ST) 289 and demonstrated intermediate susceptibility to TMP-SMX. The ST8 isolates were predominantly ST1268, with a susceptible antimicrobial susceptibility profile. Individuals with ST5 IPD were more likely to be middle aged (OR 2.6), homeless (OR 4.4), using illicit drugs(OR 4.8), and asthmatic(OR 2.6). Those with ST8 were more likely to be male (OR 4.4), homeless (OR 2.6), aboriginal (OR7.3), and a current smoker (OR 2.5). Overlapping outbreaks of ST5 and ST8 IPD occurred in an open community in Calgary, Canada and homelessness was a predominant risk factor. Homelessness represents a unique community in which pneumococcal outbreaks can occur

    The post-vaccine microevolution of invasive Streptococcus pneumoniae

    Get PDF
    The 7-valent pneumococcal conjugated vaccine (PCV7) has affected the genetic population of Streptococcus pneumoniae in pediatric carriage. Little is known however about pneumococcal population genomics in adult invasive pneumococcal disease (IPD) under vaccine pressure. We sequenced and serotyped 349 strains of S. pneumoniae isolated from IPD patients in Nijmegen between 2001 and 2011. Introduction of PCV7 in the Dutch National Immunization Program in 2006 preluded substantial alterations in the IPD population structure caused by serotype replacement. No evidence could be found for vaccine induced capsular switches. We observed that after a temporary bottleneck in gene diversity after the introduction of PCV7, the accessory gene pool re-expanded mainly by genes already circulating pre-PCV7. In the post-vaccine genomic population a number of genes changed frequency, certain genes became overrepresented in vaccine serotypes, while others shifted towards non-vaccine serotypes. Whether these dynamics in the invasive pneumococcal population have truly contributed to invasiveness and manifestations of disease remains to be further elucidated. We suggest the use of whole genome sequencing for surveillance of pneumococcal population dynamics that could give a prospect on the course of disease, facilitating effective prevention and management of IPD

    Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited

    Get PDF
    BACKGROUND: Invasive infection with Streptococcus pneumoniae (pneumococci) causes significant morbidity and mortality. Case series and experimental data have shown that the capsular serotype is involved in the pathogenesis and a determinant of disease outcome. METHODS: Retrospective review of 464 cases of invasive disease among adults diagnosed between 1990 and 2001. Multivariate Cox proportional hazard analysis. RESULTS: After adjustment for other markers of disease severity, we found that infection with serotype 3 was associated with an increased relative risk (RR) of death of 2.54 (95% confidence interval (CI): 1.22–5.27), whereas infection with serotype 1 was associated with a decreased risk of death (RR 0.23 (95% CI, 0.06–0.97)). Additionally, older age, relative leucopenia and relative hypothermia were independent predictors of mortality. CONCLUSION: Our study shows that capsular serotypes independently influenced the outcome from invasive pneumococcal disease. The limitations of the current polysaccharide pneumococcal vaccine warrant the development of alternative vaccines. We suggest that the virulence of pneumococcal serotypes should be considered in the design of novel vaccines

    Genetic Affinities within a Large Global Collection of Pathogenic Leptospira: Implications for Strain Identification and Molecular Epidemiology

    Get PDF
    Leptospirosis is an important zoonosis with widespread human health implications. The non-availability of accurate identification methods for the individualization of different Leptospira for outbreak investigations poses bountiful problems in the disease control arena. We harnessed fluorescent amplified fragment length polymorphism analysis (FAFLP) for Leptospira and investigated its utility in establishing genetic relationships among 271 isolates in the context of species level assignments of our global collection of isolates and strains obtained from a diverse array of hosts. In addition, this method was compared to an in-house multilocus sequence typing (MLST) method based on polymorphisms in three housekeeping genes, the rrs locus and two envelope proteins. Phylogenetic relationships were deduced based on bifurcating Neighbor-joining trees as well as median joining network analyses integrating both the FAFLP data and MLST based haplotypes. The phylogenetic relationships were also reproduced through Bayesian analysis of the multilocus sequence polymorphisms. We found FAFLP to be an important method for outbreak investigation and for clustering of isolates based on their geographical descent rather than by genome species types. The FAFLP method was, however, not able to convey much taxonomical utility sufficient to replace the highly tedious serotyping procedures in vogue. MLST, on the other hand, was found to be highly robust and efficient in identifying ancestral relationships and segregating the outbreak associated strains or otherwise according to their genome species status and, therefore, could unambiguously be applied for investigating phylogenetics of Leptospira in the context of taxonomy as well as gene flow. For instance, MLST was more efficient, as compared to FAFLP method, in clustering strains from the Andaman island of India, with their counterparts from mainland India and Sri Lanka, implying that such strains share genetic relationships and that leptospiral strains might be frequently circulating between the islands and the mainland
    • …
    corecore