1,583 research outputs found

    Ecosystem services and drivers of change in Nyando floodplain wetland, Kenya

    Get PDF
    Papyrus wetlands in East Africa play a vital role in supporting livelihoods of people living around them. Although, subject to natural fluctuations and threats by anthropogenic activities, little is known about historical changes in wetland functions and services, or their present status. We focused on Nyando wetland on the eastern shores of Lake Victoria, Kenya. Three sites in the wetland were identified for assessment of history and current status. Changes during the past fifty years were assessed through participatory exercises with local communities and a review of published work. To establish the current status, we used field surveys and transect walks. Results showed that the wetland is important for hydrological and also ecological functions, which depend on the connectivity of the wetland with river and lake. The major direct drivers of change were hydrological regimes and livelihood activities. The main indirect driver of change was population growth, which leads to more pressure on wetland resources. Provisioning services are important in Nyando wetland but are generated at the expense of regulating services. Hydrology and livelihoods are strongly interlinked as flooding limits access to the wetland. Understanding the historical changes in wetland functions and services is important for rural communities, policy makers and for wetland managers in guiding, planning and wetland management.Key words: Papyrus wetland, wetland ecosystem services, drivers of change, community perception, Nyando wetland

    Ecohydrological characterization of the Nyando wetland, Lake Victoria, Kenya: A State of System (SoS) analysis

    Get PDF
    Lake Victoria floodplain wetlands have a complex hydrological setting characterized by transition from a terrestrial to an aquatic environment. A state-of-system (SoS) analysis was carried out in a papyrus dominated wetland in the Nyando River Delta, on the eastern shores of Lake Victoria, Kenya, to characterize and provide data for detailed ecohydrological studies. The objectives of the study were to: (1) determine the spatio- temporal changes in the wetland evolution and (2) analyze the main hydrological factors that have influenced wetland evolution. Multi-temporal dry-season Landsat MSS, Landsat TM and Landsat ETM+ imagery covering Nyando Wetland and its surrounding area were processed and analyzed to generate time series polygon and polyline maps of the wetland and river. Results show that the wetland increased in size from 5,925 ha in 1950 to 9,925 ha in 1973, and declined to 4,527 ha in 2008. In the last 60 years, Nyando River has migrated in a general eastward direction. Time series hydrological data (1950-2009) were statistically tested for homogeneity  using the Spearman’s rank test for linear trends, Pettit test and Standard Normal Homogeneity test (SNHT) for change point analysis, and split-record tests performed for variance (F-test) and mean (t-test). In addition, data were analyzed using descriptive statistics and frequency analyses. Statistical test results show that the hydrological data series were homogeneous. Results of change point analyses indicate that total annual rainfall in Nyando declined in 1979, while the mean annual discharge for Nyando River and Lake Victoria levels had significant upward shifts in 1961. The decadal mean discharges varied significantly over time and increased by 80% from 11.45 m3/s observed in the 1950-1961 subset, reducing by 11.4 and 21.9% in the next two decadal sub-sets, before rising by 35.0% in 1990s and dropping by 24.0% in the last decade. The decadal mean annual lake levels increased from 1134.0 to 1135.43 m in the 1951-1961 and 1962-1972 and remained above the longterm mean of 1135.0 m for 43 years since 1962 before dropping drastically by 1.4 m to an average of 1134 m/year in 2005-2009. The highest recorded lake level at Kisumu Station was 1136.2 m in 1964 after increasing by 2.5 m from 1961. Discharge data exhibit trimodal seasonal patterns, while the lake levels had two peaks. The lake levels are more sensitive to direct lake rainfall. Changes in the Nyando wetland area are linked to the seasonal and episodic flood and drought events coupled with anthropogenic activities (regulation of lake levels, modification of river including cut-off meanders, river training and construction of dykes, drainage of wetland for cultivation, settlement and livestock grazing, abstraction of water for irrigation). A combination of these hydrological and human factors is the main cause of the Nyando Wetland evolution. If the land use trend continues unabated, then the increase in papyrus losses will pose a big challenge to the ecological functioning of the wetland and its support to sustaining community livelihoods.Key words: Nyando Wetland, River, ecohydrology, Lake Victoria

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    In vivo assessment of neuroinflammation in progressive multiple sclerosis: A proof of concept study with [<sup>18</sup>F]DPA714 PET

    Full text link
    Background: Over the past decades, positron emission tomography (PET) imaging has become an increasingly useful research modality in the field of multiple sclerosis (MS) research, as PET can visualise molecular processes, such as neuroinflammation, in vivo. The second generation PET radioligand [18F]DPA714 binds with high affinity to the 18-kDa translocator-protein (TSPO), which is mainly expressed on activated microglia. The aim of this proof of concept study was to evaluate this in vivo marker of neuroinflammation in primary and secondary progressive MS. Methods: All subjects were genotyped for the rs6971 polymorphism within the TSPO gene, and low-affinity binders were excluded from participation in this study. Eight patients with progressive MS and seven age and genetic binding status matched healthy controls underwent a 60 min dynamic PET scan using [18F]DPA714, including both continuous on-line and manual arterial blood sampling to obtain metabolite-corrected arterial plasma input functions. Results: The optimal model for quantification of [18F]DPA714 kinetics was a reversible two-tissue compartment model with additional blood volume parameter. For genetic high-affinity binders, a clear increase in binding potential was observed in patients with MS compared with age-matched controls. For both high and medium affinity binders, a further increase in binding potential was observed in T2 white matter lesions compared with non-lesional white matter. Volume of distribution, however, did not differentiate patients from healthy controls, as the large non-displaceable compartment of [18F]DPA714 masks its relatively small specific signal. Conclusion: The TSPO radioligand [18F]DPA714 can reliably identify increased focal and diffuse neuroinflammation in progressive MS when using plasma input-derived binding potential, but observed differences were predominantly visible in high-affinity binders

    Local Adaptation of Aboveground Herbivores towards Plant Phenotypes Induced by Soil Biota

    Get PDF
    Background: Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota. Methodology and Principal Findings: We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i) no biota (to serve as control), (ii) arbuscular mycorrhizal fungi and (ii) root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons. Conclusion/Significance: These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitativ

    Serum amyloid A primes microglia for ATP-dependent interleukin-1\u3b2 release

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1\u3b2 (IL-1\u3b2), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1\u3b2 release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands

    Intraoperative Multispectral Fluorescence Imaging for the Detection of the Sentinel Lymph Node in Cervical Cancer: A Novel Concept

    Get PDF
    PURPOSE: Real-time intraoperative near-infrared fluorescence (NIRF) imaging is a promising technique for lymphatic mapping and sentinel lymph node (SLN) detection. The purpose of this technical feasibility pilot study was to evaluate the applicability of NIRF imaging with indocyanin green (ICG) for the detection of the SLN in cervical cancer. PROCEDURES: In ten patients with early stage cervical cancer, a mixture of patent blue and ICG was injected into the cervix uteri during surgery. Real-time color and fluorescence videos and images were acquired using a custom-made multispectral fluorescence camera system. RESULTS: Real-time fluorescence lymphatic mapping was observed in vivo in six patients; a total of nine SLNs were detected, of which one (11%) contained metastases. Ex vivo fluorescence imaging revealed the remaining fluorescent signal in 11 of 197 non-sentinel LNs (5%), of which one contained metastatic tumor tissue. None of the non-fluorescent LNs contained metastases. CONCLUSIONS: We conclude that lymphatic mapping and detection of the SLN in cervical cancer using intraoperative NIRF imaging is technically feasible. However, the technique needs to be refined for full applicability in cervical cancer in terms of sensitivity and specificity

    In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET

    Get PDF
    BACKGROUND: Over the past decades, positron emission tomography (PET) imaging has become an increasingly useful research modality in the field of multiple sclerosis (MS) research, as PET can visualise molecular processes, such as neuroinflammation, in vivo. The second generation PET radioligand [18F]DPA714 binds with high affinity to the 18-kDa translocator-protein (TSPO), which is mainly expressed on activated microglia. The aim of this proof of concept study was to evaluate this in vivo marker of neuroinflammation in primary and secondary progressive MS. METHODS: All subjects were genotyped for the rs6971 polymorphism within the TSPO gene, and low-affinity binders were excluded from participation in this study. Eight patients with progressive MS and seven age and genetic binding status matched healthy controls underwent a 60 min dynamic PET scan using [18F]DPA714, including both continuous on-line and manual arterial blood sampling to obtain metabolite-corrected arterial plasma input functions. RESULTS: The optimal model for quantification of [18F]DPA714 kinetics was a reversible two-tissue compartment model with additional blood volume parameter. For genetic high-affinity binders, a clear increase in binding potential was observed in patients with MS compared with age-matched controls. For both high and medium affinity binders, a further increase in binding potential was observed in T2 white matter lesions compared with non-lesional white matter. Volume of distribution, however, did not differentiate patients from healthy controls, as the large non-displaceable compartment of [18F]DPA714 masks its relatively small specific signal. CONCLUSION: The TSPO radioligand [18F]DPA714 can reliably identify increased focal and diffuse neuroinflammation in progressive MS when using plasma input-derived binding potential, but observed differences were predominantly visible in high-affinity binders

    Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea)

    Get PDF
    The effect of direct chemical defences in plants on the performance of insect herbivores and their natural enemies has received increasing attention over the past 10 years. However, much less is known about the scale at which this variation is generated and maintained, both within and across populations of the same plant species. This study compares growth and development of the large cabbage butterfly, Pieris brassicae, and its gregarious pupal parasitoid, Pteromalus puparum, on three wild populations [Kimmeridge (KIM), Old Harry (OH) and Winspit (WIN)] and two cultivars [Stonehead (ST), and Cyrus (CYR)] of cabbage, Brassica oleracea. The wild populations originate from the coast of Dorset, UK, but grow in close proximity with one another. Insect performance and chemical profiles were made from every plant used in the experiment. Foliar glucosinolates (GS) concentrations were highest in the wild plants in rank order WIN > OH > KIM, with lower levels found in the cultivars. Caterpillar-damaged leaves in the wild cabbages also had higher GS levels than undamaged leaves. Pupal mass in P. brassicae varied significantly among populations of B. oleracea. Moreover, development time in the host and parasitoid were correlated, even though these stages are temporally separated. Parasitoid adult dry mass closely approximated the development of its host. Multivariate statistics revealed a correlation between pupal mass and development time of P. brassicae and foliar GS chemistry, of which levels of neoglucobrassicin appeared to be the most important. Our results show that there is considerable variation in quantitative aspects of defensive chemistry in wild cabbage plants that is maintained at very small spatial scales in nature. Moreover, the performance of the herbivore and its parasitoid were both affected by differences in plant quality
    corecore