3,469 research outputs found

    Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt

    Get PDF
    About 200 Bacillus isolates were isolated from tomato and potato rhizosphere and examined for their antagonistic activities against Ralstonia solanacearum T-91, the causal agent of tomato bacterial wilt (TBW), in vitro and in vivo. Four strains, AM1, D16, D29 and H8, have shown high potential of antagonistic activity against the pathogen in laboratory and greenhouse experiments. In greenhouse, 81.1 to 89.0% reduction of disease incidence of TBW was recorded in treated tomato plants with 4 isolates, which also significantly (p > 0.05) increased plant height by 22.7 to 43.7% and dry weight by 47.93 to 91.55% compared with non-treated control. 16SrRNA gene sequence, the biochemical and physiological tests and fatty acid methyl esters analysis assigned strains AM1 and D29 as Bacillus amyloliquefaciens, while strains D16 and H8 as Bacillus subtilis and B. methylotrophicus, respectively. In addition, the 4 strains showed ability to inhibit growth of the three soil-borne fungi, produce indole-3- acetic acid, siderophores and also with exception of strain D16, the other 3 strains were capable of solubilizing phosphate. Therefore, these results suggest that out of 200 isolates, Bacillus stains AM1, D16, D29 and H8 support good antagonistic activity and could be applied as biocontrol agents against TBW under greenhouse conditions beside their potential to promote tomato plants growth.Key words: Tomato, Ralstonia solanacearum, Bacillus spp, biological control, plant growth promotion activitie

    Nonlinear response of the vacuum Rabi resonance

    Full text link
    On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By employing a cavity to confine the field, the strength of this interaction can be increased many orders of magnitude to a point where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics has been reached for real atoms in optical cavities, and for artificial atoms in circuit QED and quantum-dot systems. A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity - an effect known as vacuum Rabi splitting. The circuit QED architecture is ideally suited for going beyond this linear response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet, and the appearance of additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings ladder. These constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies are available at http://www.eng.yale.edu/rslab/publications.htm

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information

    Correlation functions, null polygonal Wilson loops, and local operators

    Full text link
    We consider the ratio of the correlation function of n+1 local operators over the correlator of the first n of these operators in planar N=4 super-Yang-Mills theory, and consider the limit where the first n operators become pairwise null separated. By studying the problem in twistor space, we prove that this is equivalent to the correlator of a n-cusp null polygonal Wilson loop with the remaining operator in general position, normalized by the expectation value of the Wilson loop itself, as recently conjectured by Alday, Buchbinder and Tseytlin. Twistor methods also provide a BCFW-like recursion relation for such correlators. Finally, we study the natural extension where n operators become pairwise null separated with k operators in general position. As an example, we perform an analysis of the resulting correlator for k=2 and discuss some of the difficulties associated to fixing the correlator completely in the strong coupling regime.Comment: 34 pages, 6 figures. v2: typos corrected and references added; v3: published versio

    Proteomic Analysis of Rat Hypothalamus Revealed the Role of Ubiquitin–Proteasome System in the Genesis of DR or DIO

    Get PDF
    Obesity has become a global epidemic, contributing to the increasing burdens of cardiovascular disease and type 2 diabetes. However, the precise molecular mechanisms of obesity remain poorly elucidated. The hypothalamus plays a major part in regulating energy homeostasis by integrating all kinds of nutritional signals. This study investigated the hypothalamus protein profile in diet-induced obese (DIO) and diet-resistant (DR) rats using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF–MS analysis. Twenty-two proteins were identified in the hypothalamus of DIO or DR rats. These include metabolic enzymes, antioxidant proteins, proteasome related proteins, and signaling proteins, some of which are related to AMP-activated protein kinase (AMPK) signaling or mitochondrial respiration. Among these proteins, in comparison with the normal-diet group, Ubiquitin was significantly decreased in DR rats but not changed in DIO rats, while Ubiquitin carboxyl-terminal esterase L1 (UCHL-1) was decreased in DIO rats but not changed in DR rats. The expression level of Ubiquitin and UCHL-1 were further validated using Western blot analysis. Our study reveals that Ubiquitin and UCHL-1 are obesity-related factors in the hypothalamus that may play an important role in the genesis of DR or DIO by interfering with the integrated signaling network that control energy balance and feeding

    Efficient Conversion of Astrocytes to Functional Midbrain Dopaminergic Neurons Using a Single Polycistronic Vector

    Get PDF
    Direct cellular reprogramming is a powerful new tool for regenerative medicine. In efforts to understand and treat Parkinson's Disease (PD), which is marked by the degeneration of dopaminergic neurons in the midbrain, direct reprogramming provides a valuable new source of these cells. Astrocytes, the most plentiful cells in the central nervous system, are an ideal starting population for the direct generation of dopaminergic neurons. In addition to their potential utility in cell replacement therapies for PD or in modeling the disease in vitro, astrocyte-derived dopaminergic neurons offer the prospect of direct in vivo reprogramming within the brain. As a first step toward this goal, we report the reprogramming of astrocytes to dopaminergic neurons using three transcription factors – ASCL1, LMX1B, and NURR1 – delivered in a single polycistronic lentiviral vector. The process is efficient, with 18.2±1.5% of cells expressing markers of dopaminergic neurons after two weeks. The neurons exhibit expression profiles and electrophysiological characteristics consistent with midbrain dopaminergic neurons, notably including spontaneous pacemaking activity, stimulated release of dopamine, and calcium oscillations. The present study is the first demonstration that a single vector can mediate reprogramming to dopaminergic neurons, and indicates that astrocytes are an ideal starting population for the direct generation of dopaminergic neurons

    Yang-Mills instantons and dyons on homogeneous G_2-manifolds

    Get PDF
    We consider Lie G-valued Yang-Mills fields on the space R x G/H, where G/H is a compact nearly K"ahler six-dimensional homogeneous space, and the manifold R x G/H carries a G_2-structure. After imposing a general G-invariance condition, Yang-Mills theory with torsion on R x G/H is reduced to Newtonian mechanics of a particle moving in R^6, R^4 or R^2 under the influence of an inverted double-well-type potential for the cases G/H = SU(3)/U(1)xU(1), Sp(2)/Sp(1)xU(1) or G_2/SU(3), respectively. We analyze all critical points and present analytical and numerical kink- and bounce-type solutions, which yield G-invariant instanton configurations on those cosets. Periodic solutions on S^1 x G/H and dyons on iR x G/H are also given.Comment: 1+26 pages, 14 figures, 6 miniplot

    Control of microwave signals using circuit nano-electromechanics

    Full text link
    Waveguide resonators are crucial elements in sensitive astrophysical detectors [1] and circuit quantum electrodynamics (cQED) [2]. Coupled to artificial atoms in the form of superconducting qubits [3, 4], they now provide a technologically promising and scalable platform for quantum information processing tasks [2, 5-8]. Coupling these circuits, in situ, to other quantum systems, such as molecules [9, 10], spin ensembles [11, 12], quantum dots [13] or mechanical oscillators [14, 15] has been explored to realize hybrid systems with extended functionality. Here, we couple a superconducting coplanar waveguide resonator to a nano-coshmechanical oscillator, and demonstrate all-microwave field controlled slowing, advancing and switching of microwave signals. This is enabled by utilizing electromechanically induced transparency [16-18], an effect analogous to electromagnetically induced transparency (EIT) in atomic physics [19]. The exquisite temporal control gained over this phenomenon provides a route towards realizing advanced protocols for storage of both classical and quantum microwave signals [20-22], extending the toolbox of control techniques of the microwave field.Comment: 9 figure

    Non-small cell lung carcinoma in an adolescent manifested by acute paraplegia due to spinal metastases: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Bronchial carcinomas in childhood and adolescence are extremely rare; only individual cases have been reported previously.</p> <p>Case presentation</p> <p>We report on a 16-year-old Caucasian German boy with non-small cell lung carcinoma (squamous cell non-small cell lung carcinoma) stage IV, T4N2M1, without epidermal growth factor receptor overexpression and/or mutation or k-ras mutation. He presented with paraplegia due to spinal metastases of the bronchial carcinoma. No familial predisposition or toxin exposure was identified. Treatment following adult protocols consisted of surgical intervention for spinal metastases, first-line cisplatinum and gemcitabine, irradiation and second-line docetaxel. After a transient response our patient experienced disease progression and died about 10 months later.</p> <p>Conclusion</p> <p>Response and survival in our 16-year-old patient were similar to adult patients with stage IV non-small cell lung carcinoma.</p
    corecore