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Abstract. Air pollution is becoming an important environmental issue
and attracting increasing public attention. In urban environments, air
pollution changes very dynamically both with time and space and is af-
fected by a large variety of factors such as road type, urban architecture,
land use and variety of emission sources. In order to better understand
the complexity of urban air pollution, hyperlocal air pollution monitoring
is necessary, but the existing regulatory monitoring networks are typi-
cally sparse due to the high costs to cover a full city area at the necessary
spatial granularity. In this paper, we use the city of Antwerp in Belgium
as a pilot to analyze the temporal and spatial distribution of four atmo-
spheric pollutants (NO2, PM1, PMa2 5 and PMj) at street level by using
mobile air pollution monitoring. In particular, we explore how the atmo-
spheric pollutant concentration is affected by different context factors
(e.g., road type, land use, source proximity). Our results demonstrate
that these factors have an impact on the concentration distribution of
the considered pollutants. For example, higher atmospheric NO2 concen-
trations are observed on primary roads, compared to secondary roads,
and some source locations such as traffic lights have shown to be hot
spots of atmospheric NO2 accumulation. These findings can be useful
in order to formulate future local air quality measures and further im-
prove current air quality models based on the observed impact of the
considered context factors.

Keywords: Air pollution monitoring - Smart city - Internet of Things

1 Introduction

With industrial prosperity, urban development and growing traffic, the air pol-
lution caused by the combustion of fossil fuels such as coal, oil and natural gas
has gradually attracted worldwide attention due to its great threat to human
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health and to the natural environment. On one hand, atmospheric pollutants
have a significant negative impact on human health, leading to cardiovascular
diseases, lung cancer and thus reducing life expectancy. On the other hand, air
pollution is responsible for many environmental problems, such as eutrophication
and acidification of ecosystems.

The European Environment Agency (EEA) has listed seven types of atmo-
spheric pollutants that people may be exposed to: particulate matter (PM),
ozone (Oj3), nitrogen dioxide (NOs), sulfur dioxide (SO3), carbon monoxide
(CO), heavy metals, as well as benzene and benzopyrene [3]. In Europe, the
most problematic pollutants in terms of harm to human health are particulate
matter (PM), nitrogen dioxide (NOgz) and ground-level ozone (Os) [1]. In an
urban environment, particularly at street level, these pollutants are directly or
indirectly related to the process of burning fossil fuels such as road transport,
electricity generation, industry and households [2].

Unfortunately, many European citizens live in places with serious air pollu-
tion. Air pollution monitoring is imperative to provide the government accurate
data to assess air quality and the influence of counter measures such as low
emission zones. It also provides the public with detailed and accurate air pol-
lution information. This can help them plan some activities (e.g., location and
time of sports activities). Nowadays, air pollution is measured by regulatory
networks of static monitoring stations. Tian et al. [20] investigated the relation-
ships between air pollution and various factors in the urban landscape including
socioeconomic, urban form, and morphological characteristics based on hourly
data at 35 monitoring stations in Beijing.

Although the static measuring stations are highly reliable and able to accu-
rately measure various pollutants, the network of these stations is not suitable
for street-level air pollution monitoring since the pollutants, especially traffic-
related, can show high spatial and temporal variability within a small neighbor-
hood. Their spatial resolution is typically sparse due to the high installation and
maintenance costs (1~10 km [11]). For example, there are currently only 108
static measuring stations in Belgium, a country with an area of 30,688 square
kilometers and a population of more than 11.4 million inhabitants [12]. There-
fore, the static measuring stations may not always accurately characterize the
high spatio-temporal variation in atmospheric pollutant concentration at street
level and may thus not be representative for the whole city.

Meanwhile, advances in sensor technology and the emergence of portable and
lower-cost sensing devices give rise to new opportunities for mobile air pollution
monitoring. There have been many studies on the feasibility of mobile monitoring
to measure air pollution at the high spatial and temporal resolution [23]. SM et
al. [19] developed a smart personal air quality monitoring system (SPAMS) for
urban air quality monitoring and personal exposure assessment. The monitoring
campaign was designed to assess both pedestrian and public transport passenger
exposure in Chennai city, India. The pedestrian exposure monitoring was carried
out at three locations for 10 days, whereas personal exposure monitoring while
travelling in bus was carried out at selected routes over a period of three months.
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In order to achieve fine-grained and realtime air pollution monitoring, Kaivonen
et al. [10] deploy wireless sensors on public buses running on two selected routes
to complement the coverage of stationary sensors in the city center of Uppsala,
Sweden. McKercher et al. [14] assess the capability of low-cost mobile monitors
to acquire useful data in a city without a monitoring network in place based on 30
days of data resulted from a bicycle platform along a 13.4 km fixed concentric
route in Lubbock, Texas. Van den Bossch et al. [5] explored the potential of
opportunistic mobile monitoring to map exposure to air pollution in an urban
environment at a high spatial resolution. This was based on a total of 393 hours of
measurements collected by city wardens in Antwerp, Belgium. Hofman et al. [8]
evaluated personal exposure to ultrafine particle (UFP), black carbon (BC) and
heavy metals while cycling near Antwerp, Belgium. The mobile monitoring was
performed along two commuting routes for about two months.

However, these studies are often limited in spatial and/or temporal coverage.
This is because they usually choose certain locations and time periods to carry
out the monitoring campaigns. For example, the studies in [10] and [14] choose to
use fixed routes to move carries (buses and bicycles). The fixed and short routes
obviously can not prove the impact of various context factors on atmospheric
pollutant concentration. Besides, the duration of monitoring campaigns in [19],
[14] and [5] is very short, ranging from ten days to several months, which ignores
the effects of climate and seasonality on atmospheric pollutant concentration.
In our study, we perform a one-year opportunistic mobile monitoring campaign,
where the routes of mobile sensors cover almost the entire city center of Antwerp.

The main contribution of this paper is in the following aspects: (1) we provide
a systematic guideline on how to process and analyze air pollution datasets with
time sequence and geographic information; (2) we analyze the temporal and
spatial distribution of the considered pollutants and investigate the impact of
various context factors (e.g., road type, land use and different emission sources)
on the atmospheric pollutant concentration, which will facilitate the construction
of a new air quality model [7] [6] in the future.

The rest of the paper is organized as follows. Section 2 introduces the methods
and dataset adopted in this study. Section 3 describes and discusses some results
we have found in present study and section 4 presents the conclusions.

2 Material and Methods

This section firstly describes the monitoring campaign that this study used to
collect air pollution data and the details of the collected dataset. Secondly, this
section provides a systematic guideline on how to process and analyze air pollu-
tion datasets with time sequence and geographic information, as shown in Fig. 1.

2.1 Data Collection

Opportunistic mobile monitoring is defined by [5] as a data collection method
that installs the measurement devices on existing mobile sensor platforms. It dif-
fers from targeted mobile monitoring in that the measurement devices in targeted
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Fig. 1. The main workflow of the system

mobile monitoring follow the fixed routes designed by the researcher in advance,
while the measurement devices in opportunistic mobile monitoring follow the
daily routines of existing mobile sensor platforms. Therefore, opportunistic mo-
bile monitoring enables the collection of large amounts of data at a relatively
small cost.

The data used in our study has been collected as part of the opportunistic
mobile monitoring campaign in Antwerp (with a population of 520,504 inhab-
itants, covering an area of 204.5 km?), Belgium based on the City of Things
(CoT) framework [18]. 20 air quality sensors were mounted on the roofs of the
Bpost (Belgian Post Group, the Belgian company responsible for the delivery of
national and international mail) vans since January 2018. In this paper, we use
the data from January to December 2018. These sensors deliver a record every 30
seconds, including measurements of four pollutants (NO2 and three particulate
matters with aerodynamic diameters below 1 pm (PM;), 2.5 pm (PMa 5) and 10
pm (PMyg)) and meteorological information, such as temperature and relative
humidity, which are linked with corresponding GPS locations and time stamps.
As each Bpost car is driving around in the city, the set of sensors can cover
the entire city in terms of measurements enabling the collection of real-time air
quality information with broad city coverage, as opposed to an approach with
static sensors, which only allows for local information. Furthermore, the number
of static sensors necessary to cover the entire city is huge when compared to the
needed number of cars and, thus, the installation and maintenance costs are also
higher, which represent a considerable restriction when extending these kind of
deployments.

2.2 Map Matching

In an urban environment, the occlusion of buildings will affect the reception of
GPS signals. Coupled with the geographical error of the GPS device itself, we
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found that there is occasionally a big difference between the GPS location of the
collected data points and their actual location.

The simplest way to improve the quality of the collected data points is to
snap their locations to the nearest road segments. However, this method has
great drawbacks. Without considering the consistency of the trajectories, it may
lead to a point being snapped to an inconsistent road, or successive data points
jumping from one road to another. Specifically, this can result in unfeasible
trajectories, e.g., with unconnected roads.

To overcome this issue, Newson et al. [16] present an approach to use a Hidden
Markov Model (HMM) to select the best candidate by combining the spatial and
temporal component. Therefore, unconnected roads cannot be candidates and
trajectories of data points must be consistent with the road network. For each
GPS location, a number of map matching candidates within a certain radius
around the GPS point is computed. To complement this approach, Luxen et
al. [13] exploit the Viterbi algorithm to compute the most likely sequence of map
matching candidates. An implementation of this approach is available in OSRM
(Open Source Routing Machine) project. This framework can use a referenced
road network (e.g., OpenStreetMap) to generate a hierarchical routing network.
Xie et al. [22] proposed a novel approach to infer the road network by aligning
the tracks for each road segment using a stretching and compression strategy.
In this paper, we applied OSRM project to improve the data quality. Fig. 2
displays an example of the original locations and the improved locations after
map-matching.

2.3 Data Processing and Data Cleaning

Further processing steps include filtering out data located outside of the study
area and data not in working hours. These are described in more detail later in
this section.

Step 1. filtering out data outside the study area This study focuses on
the city of Antwerp. To determine which measurements are located in the study
area, we set two simple thresholds: 51.1430 < latitude < 51.3780 and 4.2170 <
longitude < 4.4980. We found that more than 90% of the measurements for each
pollutant were located in the city of Antwerp.

Step 2. activity pattern detection and filtering out off-hour data Since
the mobile sensors are measuring continuously day and night, we need to deter-
mine the working period to distinguish when the vehicle is on the road (working
hours) and when it is parked in the garage (off-hours). We calculated the vehi-
cle speed (km/h) from the geographical locations of subsequent measurements.
Then, we applied the vehicle speed to detect the daily activity pattern of these
devices.

As shown in Fig. 3, the daily working periods (working hours) can be defined
as follows:
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Fig. 3. The activity pattern of vehicles. It indicates the average speed (km/h) of vehi-
cles for each hour and each day of the week.
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— Monday to Friday: 08:00 ~ 21:00
— Saturday: 08:00 ~ 15:00
— Sunday: no activity

Based on that, nearly 40% of the collected data is recorded in the streets, and
is used in our analysis.

In this study, we measured, processed and analyzed four pollutants NOs,
PM;, PMs 5 and PMyq. In the following sections, we only choose one or two
pollutants (e.g., NOs and PMs 5) to show representative analysis results, since
our main purpose is to use Antwerp as a pilot to illustrate the feasibility of the
system, rather than investigating the actual urban pollution levels.

2.4 Data Aggregation

Spatial Variability We generate the air pollution map at street level for the en-
tire city to see if we can identify general distribution patterns of these pollutants.
Fig. 4 shows the resulting map of atmospheric NOy concentration. Different col-
ors represent different NOs concentration levels. The darker the color, the higher
the NOy concentration level and the worse the air quality. It is obvious that the
concentration of NOs on the main roads is much higher compared to secondary
roads in residential areas. We can also find that the concentration of these pollu-
tants exhibits high spatial variability in the considered urban environment. The
concentration of NOs in two adjacent streets may vary considerably.

Temporal Variability All analyses of the temporal variation in atmospheric
concentrations in this paper are based on the work-hour data, as defined earlier.
From Fig. 5, we can observe the daily and weekly distribution patterns of the
exhibited NOy and PMj 5 concentrations. During the day, atmospheric concen-
trations of NOgy and PMs 5 increase during the morning and evening rush hours,
especially during the morning peak (at 8 am and 9 am). This is probably be-
cause the morning rush hour is more concentrated between 9 am and 10 am,
whereas the evening rush hour seems to be spread out over a longer period of
time (4 am ~ 8 am). During the week, the concentrations of NOs and PMjy 5
in working days are generally higher than that on Saturdays. This pronounced
diurnal variation, including rush hour peaks and difference between working and
weekend days is typically observed for traffic-related pollution in urban environ-
ments [8] [9] [21] [17] [15].

3 Result and Discussion

In this section, a series of data analysis tasks are conducted to understand the
relationship between the considered pollutants and various context factors (e.g.,
road type, land use) and then find whether these context factors have an effect
on the concentration of pollutants.
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Fig. 4. Map of NO3 concentration: average NOz concentration for each road segment
with at least one measurement. The NO2 concentration levels correspond to the Euro-
pean Air Quality Index [4].
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Fig. 5. The temporal pattern of (a) NO2 and (b) PMa 5. It indicates the average NO,
and PMs_5 concentrations (ug/m?) for each work-hour of the day and each day of the
week.

3.1 Road Type: Primary Roads and Secondary Roads

In this study, the primary roads refer to roads with reference number like N173
and E19, as shown in Fig. 6. In fact, these primary roads usually have high
traffic flow as they connect popular regions and have higher capacity. As for
secondary roads, they tend to have relatively lower traffic capacity but higher
traffic density. In this paper, traffic flow refers to the number of vehicles passing
a reference point per unit of time while traffic density is defined as the number
of vehicles per unit length of the road. From Fig. 7(a), we can see that the NO,
concentration on primary roads is slightly shifted towards higher values. Based on
the T-test, there is a statistically significant difference in the NOy concentrations
observed along primary roads and secondary roads (p < 0.05). Also, the NOy
concentration on primary roads is always higher than that on secondary roads
during most hours of the day, as shown in Fig. 7(b). This confirms that the road
type has a significant impact on the distribution of NOs concentration. The ring
road is a 6-8 lane road with a much higher capacity, when compared to a single-
lane secondary road. This higher capacity (vehicles per hour per lane) will lead
to the higher atmospheric NO5 concentrations.

3.2 Source Proximity: Traffic Signals

The reason that we are interested in the locations of traffic signals is that these
locations usually have relatively high traffic density and are prone to congestion,
as the vehicles stop at the traffic signals frequently and many traffic signals are
deployed at road intersections. We define a threshold to determine if a mea-
surement is close to the traffic signals. In this study, we set the threshold to 30
meters. If the distance between a point and a traffic signal is less than 30 meters,
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Road Type
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Fig. 6. Classification of road types in Antwerp, where the red lines represent the pri-
mary roads and the blue lines represent the secondary roads.
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Fig. 7. (a) The normalized histogram and boxplot of the NO2 concentration on primary
roads and secondary roads: they both indicate the NO2 concentration on primary
roads is slightly shifted towards higher values; (b) The temporal distribution of NO,
concentration on primary roads and secondary roads: it indicates the average NOg
concentration on the two kinds of roads for each hour of the day and each day of the
week.
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then the point belongs to the subset close to the traffic signals, otherwise the
point belongs to the other subset. From Fig. 8(a), we can find that the NOy
concentration close to the traffic signals is slightly shifted towards higher values.
As confirmed by the T-tests result (p < 0.05), there is a clear difference in the
NO; concentration close to traffic signals and others. Fig. 8(b) shows the NO,
concentration of data close to traffic signals is higher during most time of the
day and shows higher temporal variability within a day.
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Fig. 8. (a) The normalized histogram and boxplot of the NO2 concentration close to
traffic signals and others: they both indicate the NO2 concentration close to traffic sig-
nals and others is slightly shifted towards higher values; (b) The temporal distribution
of NOg concentration close to traffic signals and others: it indicates the average NO2
concentration of these two subsets for each hour of the day and each day of the week.

3.3 Land Use: Residential Regions and Industrial Regions

In this study, we acquire the land use types from OpenStreetMap, a collaborative
project to create a free editable map of the world, as shown in Fig. 9. We define a
threshold to decide whether a point belongs to the industrial region or residential
region. In this study, we set the threshold to 10 meters. If the distance from a
point to the industrial /residential region is less than 10 meters, then this point
belongs to the industrial/residential region.

From Fig. 10, for both NOy and PMs 5, we can observe that the concen-
tration in residential regions is slightly shifted towards higher values compared
to that in industrial regions. According to T-tests result (p < 0.05), there is a
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Fig. 9. Classification of land use types in Antwerp, where the purple polygons represent
the industrial area and the yellow polygons represent the residential area.



14 X. Qin et al.
S : "
0.016 2150 T mn residential
- =1 i
© | i e industrial
€ 100 i
0.014 S I |
o |
S 50 : l
0.012 S -
S i i
20.010 = residential industrial
=
20.008
<
a

0
NO, concentration (ug/m?3)

(a)

Probability

20 60 80
PM.s concentration (ug/m?3)

(b)

100

=
S -

5 15 T e residential
o e industrial
] i 1

g |

o i

< i

85 I

0 1

<ol t I

Q  residential industrial

Fig. 10. The normalized histograms and boxplots of the (a) NOz and (b) PMs. 5 con-
centrations in industrial regions and residential regions: they indicate for both NOq
and PMs 5, the concentrations in residential regions are higher than that in industrial

regions.

residential

Day of the week
~
o

NO, concentration (ug/m?3)

8 9 10 11 12 13 14 15 16 17 18 19 20 21
industrial

SatI

8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time of the day (hour)

(a)

o
o

I
u
o

4
=
c

EN

o

=
3

l"
30

Day of the week

=
c
®

=
o
3

residential

Day of the week

8 9 10 11 12 13 14 15 16 17 18 19 20 21
industrial

SatI

8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time of the day (hour)

(b)

-
3

=
=
c

=
2

Day of the week

=
c
@

=
o
3

IS o o

PM,_s concentration (ug/m3)

w

Fig. 11. The temporal distribution of (a) NO2 and (b) PMa.5 concentrations in indus-
trial regions and residential regions: it indicates the average NO2 and PMs 5 concen-
trations in these two kinds of regions for each hour of the day and each day of the

week.



Context-based analysis of urban air quality 15

significant difference between the concentrations in industrial regions and resi-
dential regions. Fig. 11 shows the NOs and PMs 5 concentrations in residential
regions are always higher than that in industrial regions during most time of
the day. This is not surprising as this study focuses on urban traffic-related pol-
lutants (e.g., NOg and PM), while industry in the city of Antwerp is mainly
petrochemical. Due to the obvious higher traffic density in the city center and
urban architecture impeding natural ventilation, higher pollutant concentrations
can be expected in the residential areas.
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Fig. 12. (a) The normalized histogram and boxplot of the PMs 5 concentration inside
LEZ and outside LEZ: they both indicate the PMs 5 concentration outside LEZ is
slightly shifted towards higher values; (b) The temporal distribution of PMs 5 concen-
tration inside LEZ and outside LEZ: it indicates the average PMs 5 concentration of
these two subsets for each hour of the day and each day of the week.

3.4 Low Emission Zone

Since February 2017, the city of Antwerp has introduced a Low Emission Zone
(LEZ) in the entire city center. The entry restrictions of the LEZ will be grad-
ually tightened. In the first stage between 2017 and 2020, vehicles with high
pollutant levels are no longer permitted to enter the environmental zone. The
LEZ of Antwerp is permanent, that means 24 hours a day for 7 days a week, also
on Sundays and public holidays. The environmental zone covers 20 km? and af-
fects about 200,000 inhabitants. Fig. 12(a) shows that the PM2.5 concentration
outside LEZ is hugely shifted towards higher values. In addition to the T-tests
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result (p < 0.05), there is a significant difference in the PMy 5 concentration in-
side LEZ and outside LEZ. As shown in Fig. 12(b), PMy 5 concentration outside
LEZ is always higher than that inside LEZ during most time of the day. This
may be because in the face of additional taxes, people are more likely to choose
environmentally friendly modes of travel, such as taking a bus or riding a bicycle
instead of taking a private car with high emissions.

4 Conclusion and Further Steps

First of all, this study proofs the feasibility of collecting meaningful air quality
data from opportunistic mobile monitoring platforms. Based on the data col-
lected from Antwerp, we analyzed the spatial and temporal distribution of the
considered pollutants (NO2 and PM) and found that the atmospheric pollutant
concentration is highly variable in both time and space. The results show the
value of fine-grained air pollution monitoring. We also identified general distri-
bution patterns of the considered pollutants. For example, the main roads are
very conspicuous in the NOg concentration map. In particular, we investigated
the impact of various context factors (e.g., road type, land use and some emission
sources) on the atmospheric pollutant concentration. For example, some source
locations, such as traffic signals, tend to have higher NOy concentration levels.
We believe that these findings are of great value in assessing current air pollution
control measures and formulating future air quality improvement measures.

Next, we intend to construct more effective air quality prediction and air
pollution early warning models based on the context aware analysis.
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