95 research outputs found

    Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas

    Get PDF
    A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvenic cascade is fluid, satisfying RMHD equations (with the Alfven speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping. Secondly, the organising principle of this turbulence is elucidated in the form of a generalised kinetic free-energy invariant. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses; these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics of the plasma are modified so as to reduce the energetic cost of bending magnetic-field lines or of compressing/rarefying them. Finally, it is shown that this theory can be derived as a long-wavelength limit of non-Maxwellian slab gyrokinetics.Comment: 61 pages, accepted to Journal of Plasma Physics; Abstract abridge

    INEFFICIENT DRIVING of BULK TURBULENCE by ACTIVE GALACTIC NUCLEI in A HYDRODYNAMIC MODEL of the INTRACLUSTER MEDIUM

    Get PDF
    Central jetted active galactic nuclei (AGN) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid 3-d hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM which in turn decay to volume-filling turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, excitation of turbulence relies on the g-modes' ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model

    THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE

    Get PDF
    We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind

    Measures of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence

    Get PDF
    We measure the local anisotropy of numerically simulated strong Alfvénic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are “ribbon-like" — statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the nth-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran et al. (2015), while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of the perpendicular anisotropy (i.e., of the aspect ratio of the Alfvénic structures in the plane perpendicular to the mean magnetic field) depends on the amplitude of the fluctuations. This is shown to be equivalent to the anticorrelation of fluctuation amplitude and alignment at each scale. The dependence of the anisotropy on amplitude is shown to be more significant for the anisotropy between the perpendicular and fluctuation-direction scales than it is between the perpendicular and parallel scales

    Alignment and Scaling of Large-Scale Fluctuations in the Solar Wind

    No full text
    We investigate the dependence of solar wind fluctuations measured by the Wind spacecraft on scale and on the degree of alignment between oppositely directed Elsasser fields. This alignment controls the strength of the non-linear interactions and, therefore, the turbulence. We find that at scales larger than the outer scale of the turbulence the Elsasser fluctuations become on average more anti-aligned as the outer scale is approached from above. Conditioning structure functions using the alignment angle reveals turbulent scaling of unaligned fluctuations at scales previously believed to lie outside the turbulent cascade in the `1/f range'. We argue that the 1/f range contains a mixture of non-interacting anti-aligned population of Alfv\'{e}n waves and magnetic force-free structures plus a subdominant population of unaligned cascading turbulent fluctuations.Comment: 5 pages, 4 figure

    Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

    Get PDF
    Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization

    [Plasma 2020 Decadal] Disentangling the Spatiotemporal Structure of Turbulence Using Multi-Spacecraft Data

    Get PDF
    This white paper submitted for 2020 Decadal Assessment of Plasma Science concerns the importance of multi-spacecraft missions to address fundamental questions concerning plasma turbulence. Plasma turbulence is ubiquitous in the universe, and it is responsible for the transport of mass, momentum, and energy in such diverse systems as the solar corona and wind, accretion discs, planet formation, and laboratory fusion devices. Turbulence is an inherently multi-scale and multi-process phenomenon, coupling the largest scales of a system to sub-electron scales via a cascade of energy, while simultaneously generating reconnecting current layers, shocks, and a myriad of instabilities and waves. The solar wind is humankind's best resource for studying the naturally occurring turbulent plasmas that permeate the universe. Since launching our first major scientific spacecraft mission, Explorer 1, in 1958, we have made significant progress characterizing solar wind turbulence. Yet, due to the severe limitations imposed by single point measurements, we are unable to characterize sufficiently the spatial and temporal properties of the solar wind, leaving many fundamental questions about plasma turbulence unanswered. Therefore, the time has now come wherein making significant additional progress to determine the dynamical nature of solar wind turbulence requires multi-spacecraft missions spanning a wide range of scales simultaneously. A dedicated multi-spacecraft mission concurrently covering a wide range of scales in the solar wind would not only allow us to directly determine the spatial and temporal structure of plasma turbulence, but it would also mitigate the limitations that current multi-spacecraft missions face, such as non-ideal orbits for observing solar wind turbulence. Some of the fundamentally important questions that can only be addressed by in situ multipoint measurements are discussed

    Did smokefree legislation in England reduce exposure to secondhand smoke among nonsmoking adults? Cotinine analysis from the Health Survey for England.

    Get PDF
    Background: On 1 July 2007, smokefree legislation was implemented in England, which made virtually all enclosed public places and workplaces smokefree. Objectives: We examined trends in and predictors of secondhand smoke exposure among nonsmoking adults to determine whether exposure changed after the introduction of smokefree legislation and whether these changes varied by socioeconomic status (SES) and by household smoking status. Methods: We analyzed salivary cotinine data from the Health Survey for England that were collected in 7 of 11 annual surveys undertaken between 1998 and 2008. We conducted multivariate regression analyses to examine secondhand smoke exposure as measured by the proportion of nonsmokers with undetectable levels of cotinine and by geometric mean cotinine. Results: Secondhand smoke exposure was higher among those exposed at home and among lower-SES groups. Exposure declined markedly from 1998 to 2008 (the proportion of participants with undetectable cotinine was 2.9 times higher in the last 6 months of 2008 compared with the first 6 months of 1998 and geometric mean cotinine declined by 80%). We observed a significant fall in exposure after legislation was introduced—the odds of having undetectable cotinine were 1.5 times higher [95% confidence interval (CI): 1.3, 1.8] and geometric mean cotinine fell by 27% (95% CI: 17%, 36%) after adjusting for the prelegislative trend and potential confounders. Significant reductions were not, however, seen in those living in lower-social class households or homes where smoking occurs inside on most days. Conclusions: We found that the impact of England’s smokefree legislation on secondhand smoke exposure was above and beyond the underlying long-term decline in secondhand smoke exposure and demonstrates the positive effect of the legislation. Nevertheless, some population subgroups appear not to have benefitted significantly from the legislation. This finding suggests that these groups should receive more support to reduce their exposure

    Supersonic plasma turbulence in the laboratory

    Get PDF
    The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers

    Evidence for electron Landau damping in space plasma turbulence

    Get PDF
    How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbulent electromagnetic field and electrons in the Earth's magnetosheath, the region of solar wind downstream of the Earth's bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping. This signature is coherent over time, close to the predicted resonant velocity, similar to that seen in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This suggests that electron Landau damping could play a significant role in turbulent plasma heating, and that the technique is a valuable tool for determining the particle energisation processes operating in space and astrophysical plasmas.STFC Ernest Rutherford Fellowship [ST/N003748/2]; NASA HSR grant [NNX16AM23G]; NSF CAREER Award [AGS-1054061]; NASA HGI grant [80NSSC18K0643]; NASA MMS GI grant [80NSSC18K1371]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore