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ABSTRACT
We measure the local anisotropy of numerically simulated strong Alfvénic turbulence with
respect to two local, physically relevant directions: along the local mean magnetic field and
along the local direction of one of the fluctuating Elsasser fields. We find significant scaling
anisotropy with respect to both these directions: the fluctuations are ‘ribbon-like’ – statistically,
they are elongated along both the mean magnetic field and the fluctuating field. The latter form
of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent
scalings of the nth-order conditional structure functions in the direction perpendicular to both
the local mean field and the fluctuations agree well with the theory of Chandran, Schekochihin
& Mallet, while the parallel scalings are consistent with those implied by the critical-balance
conjecture. We quantify the relationship between the perpendicular scalings and those in the
fluctuation and parallel directions, and find that the scaling exponent of the perpendicular
anisotropy (i.e. of the aspect ratio of the Alfvénic structures in the plane perpendicular to
the mean magnetic field) depends on the amplitude of the fluctuations. This is shown to be
equivalent to the anticorrelation of fluctuation amplitude and alignment at each scale. The
dependence of the anisotropy on amplitude is shown to be more significant for the anisotropy
between the perpendicular and fluctuation-direction scales than it is between the perpendicular
and parallel scales.
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1 IN T RO D U C T I O N

Strong plasma turbulence is present in a wide range of astrophys-
ical systems, and is directly measured by spacecraft in the solar
wind (e.g. Bruno & Carbone 2013). In the presence of a strong
mean magnetic field B0, on scales longer than the ion gyroradius,
the Alfvénically polarized fluctuations decouple from the compres-
sive fluctuations and satisfy the reduced magnetohydrodynamic
(RMHD) equations. These can be derived both as an anisotropic
limit of standard MHD (Kadomtsev & Pogutse 1974; Strauss 1976)
and as a large-scale limit of gyrokinetics (Schekochihin et al. 2009),
meaning that they describe the turbulence in both strongly and
weakly collisional plasmas. Written using Elsasser (1950) variables
z±
⊥ = u⊥ ± b⊥, where u⊥ and b⊥ are the velocity and magnetic-field
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(in velocity units) perturbations perpendicular to B0, the RMHD
equations are

∂t z±
⊥ ∓ vA∂z z±

⊥ + z∓
⊥ · ∇⊥z±

⊥ = −∇⊥p, (1)

where the pressure p is determined from ∇⊥ · z± = 0, vA = |B0| is
the Alfvén speed, and we have taken B0 to be in the z direction.

The turbulence described by equations (1) is known to be
anisotropic with respect to the local magnetic-field direction, in both
numerical simulations of full MHD with a strong mean field (Cho &
Vishniac 2000; Maron & Goldreich 2001), direct numerical simula-
tions of equations (1) (Chen et al. 2011; Beresnyak 2015) and in the
solar wind (Horbury, Forman & Oughton 2008; Podesta et al. 2009;
Wicks et al. 2010; Chen et al. 2011), with the anisotropy increasing
at smaller scales. This anisotropy is explained by the critical-balance
conjecture (Goldreich & Sridhar 1995, 1997), which posits that the
non-linear time τ±

nl and Alfvén (linear) time τ±
A

.= l±‖ /vA must be
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comparable at each scale, where l‖ is the coherence length along the
magnetic field lines. The dynamics of weak turbulence (τ±

A � τ±
nl )

lead to a decrease in τ±
nl until τ±

A ∼ τ±
nl , while if τA 	 τ nl, it is

causally impossible to maintain the parallel coherence over length
l‖, so l‖ – and thus τA – adjust until τ±

A ∼ τ±
nl (Goldreich & Srid-

har 1997; Nazarenko & Schekochihin 2011). This guarantees that
the two time-scales are comparable, and so the cascade time is,
inevitably, τc ∼ τ±

A ∼ τ±
nl . By an argument following Kolmogorov

(1941), the scale independence of the mean energy flux,

ε± ∼
(
δz±

⊥
)2

τc
∼

(
δz±

⊥
)2

vA

l±‖
∼ const, (2)

implies that (δz±
⊥)2 ∼ l±‖ (ε±/vA), or, equivalently, the energy spec-

tra of the Elsasser fields have a spectral index in the parallel direction
of −2, regardless of the details of the non-linear term. This is seen in
both measurements of the solar wind and simulations cited above.

The perpendicular scaling is harder to establish because only z±
⊥

that has a gradient in the direction of z∓
⊥ gives rise to a non-zero

contribution to the RMHD non-linearity, z∓
⊥ · ∇⊥z±

⊥. Combined with
the fact that the Elsasser-fields are 2D-solenoidal, ∇⊥ · z±

⊥ = 0, this
means that dynamic alignment (Boldyrev 2006) of their fluctuation
vectors to within a small angle θ± of each other will decrease the
non-linearity by a factor sin θ±. The non-linear time may, therefore,
be defined as

τ±
nl

.= λ

δz∓
⊥ sin θ± , (3)

where λ is the perpendicular coherence length. If θ is correlated with
amplitude in a scale-dependent manner, this can alter the scaling
behaviour of the non-linear time, and, therefore, the scaling of
the fluctuation amplitudes. There is continuing disagreement as to
whether the numerical evidence that supports the scale-dependence
of the dynamic alignment angle sin θ± is truly representative of
the asymptotic state of the RMHD inertial range (Beresnyak 2014;
Perez et al. 2014).

The alignment of the fields and the consequent reduction in the
non-linearity can also be linked to anisotropy within the perpendic-
ular plane (Boldyrev 2006)1. Critical balance implies that

l‖
vA

∼ λ

δz±
⊥ sin θ± , (4)

where l‖ is now taken to be the coherence length along the magnetic
field of the combination of the fluctuating fields which make up
the structure, z+

⊥ and z−
⊥. Meanwhile, the distance that the magnetic

field lines wander in the perpendicular plane is typically of the order
of

ξ ∼ max(δz+, δz−)

vA
l‖, (5)

where we choose the maximum of the two Elsasser fields because
b⊥ ≈ z±

⊥/2 when z±
⊥ 	 z∓

⊥. Since l‖ is the coherence length along
the field line, the combined z+

⊥ and z−
⊥ fluctuations must also be

coherent in their own direction (the ‘fluctuation direction’) over at

1 The argument that follows only applies to sheetlike structures. Aligned
circular structures are also possible (Perez & Chandran 2013), but sheets
have been observed as the dominant structures in MHD turbulence in a wide
range of studies (Grauer, Krug & Marliani 1994; Politano, Pouquet & Sulem
1995; Maron & Goldreich 2001; Greco et al. 2010). Recently, Howes (2015)
has shown that the Alfvén wave dynamics lead naturally to the formation
of sheetlike structures, and so our restriction to this type of structures is
motivated by analysis of direct numerical simulations of the turbulence.

least the distance ξ . This direction is defined to within an angle
θ±, because the fields are aligned with each other within that angle.
Therefore, the typical aspect ratio of coherent structures within the
perpendicular plane is λ/ξ . Comparing equations (4) and (5), we
find that

sin θ± ∼ λ

ξ

.= sin θ. (6)

The same argument was used by Boldyrev (2006) for the angle
between δu⊥ and δb⊥, θub, instead of θ±: either angle being small
reduces the non-linearity, so whichever is smaller in the sheetlike
structures will generally constrain the aspect ratio λ/ξ better.

Combined with the anisotropy in the parallel direction, the above
argument implies that the turbulence may exhibit 3D anisotropy in
an instantaneous local basis defined by the directions of the mean
magnetic field, the fluctuations, and the direction perpendicular to
both. Equivalently, turbulent fluctuations may have different coher-
ence scales l‖, ξ and λ in these three directions.2

It is not hard to show that scale-dependent perpendicular
anisotropy cannot exist without non-self-similar scale dependence
of the joint distribution of the vector field increments, i.e. without
intermittency. Suppose the joint distribution p(δz±

⊥|r⊥) were invari-
ant when the amplitude were rescaled by ra

⊥, i.e. the rescaled vector
variable w = δz±

⊥/ra
⊥ had a distribution that did not depend on r⊥.

The fact that the whole joint distribution is invariant means that not
only are the amplitudes non-intermittent, but the angle

θδz±
⊥

= arctan
δz±

⊥x

δz±
⊥y

= arctan
wx

wy

(7)

also has a distribution independent of r⊥. This guarantees that the
conditional nth-order structure function has an angle-independent
scaling:

Sn,3D =
〈

(δz±
⊥)n|θδz±

⊥
, r⊥

〉
= rna

⊥
〈
wn|θδz±

⊥

〉
= rna

⊥ fn

(
θδz±

⊥

)
, (8)

where the unknown function fn cannot depend on r⊥. Thus, if the
vector δz±

⊥ is non-intermittent (has a scale-invariant distribution),
it cannot have scale-dependent perpendicular anisotropy or equiva-
lently, according to the argument earlier in this Introduction, scale-
dependent alignment.

In this paper, we study the 3D anisotropy and intermittency in
numerically simulated RMHD turbulence, using a 3D conditional
structure function method, described in Section 2, which was first
used by Chen et al. (2012) for measurements in the solar wind.
In Section 3, we present the results obtained using second-order
conditional structure functions, showing that there is indeed signif-
icant 3D anisotropy. In Section 4, we go further, and present the
results of the 3D conditional structure function analysis for struc-
ture functions of up to fifth order, showing that the turbulence is
highly intermittent in all three directions, and comparing the scal-
ings in the perpendicular direction to a recent theoretical model of
intermittency in Alfvénic turbulence (Chandran et al. 2015), finding
that the measurements are consistent with this model. The scalings

2 One expects some degree of anisotropy within the perpendicular plane just
due to kinematic constraints imposed by the solenoidality of the fields z±

⊥.
We discuss this issue in the appendix, showing that solenoidality does not
directly constrain the conditional structure function. Note that all anisotropy
discussed here is local, conditioned on locally meaningful physical direc-
tions, rather than global, studied in the more formal approaches to anisotropy
in hydrodynamic (Kurien & Sreenivasan 2000) and solar wind (Bigazzi et al.
2006; Sorriso-Valvo et al. 2006; Yordanova et al. 2015) turbulence.

MNRAS 459, 2130–2139 (2016)
Downloaded from https://academic.oup.com/mnras/article-abstract/459/2/2130/2595192
by University College London user
on 29 November 2017



2132 A. Mallet et al.

in the parallel and fluctuation directions are compared to a simple
model where anisotropies do not depend on amplitude at a par-
ticular scale, which turns out to be slightly inconsistent with the
data. This implies that the anisotropy is itself intermittent. In Sec-
tion 5, we present a quantitative analysis of this intermittency of
anisotropy, and show that the scaling exponents of the aspect ratios
λ/ξ and λ/l‖ increase with the order n of the structure functions that
one uses to calculate them. We show that the perpendicular aspect
ratio sin θ

.= λ/ξ (the anisotropy within the perpendicular plane)
is significantly intermittent, while the parallel aspect ratio sin φ

.=
λ/l‖ is less so. We then discuss what implications this has for the
physics of the collisions of balanced Alfvénic fluctuations in the
model of Chandran et al. (2015). In Section 6, we compare our re-
sults on the intermittency of the anisotropy within the perpendicular
plane to the scaling of the alignment angle defined more tradition-
ally in terms of the ratio of different structure functions (Mason,
Cattaneo & Boldyrev 2006), and conclude that they are consistent
with each other, which suggests that the two methods are indeed
measuring the same phenomenon. In Section 7, we summarize our
conclusions and discuss the relationship between this and previous
work.

2 N U M E R I C A L S E T U P A N D 3 D C O N D I T I O NA L
S T RU C T U R E F U N C T I O N S

Equations (1) were solved in a triply periodic box of resolution
10243, using the code described in Chen et al. (2011). In the code
units, vA = 1 and the box has length 2π in each direction. The
RMHD equations are invariant under the simultaneous rescaling

z → az, vA → avA (9)

for arbitrary a. Therefore, while in code units z±
⊥ ∼ vA and the box

is cubic, in fact, when translated into physical units, the box is much
longer in the parallel direction and the fluctuation amplitudes are
much smaller than vA, even as the linear and non-linear terms remain
comparable. Energy was injected via white-noise forcing at k⊥ = 1,
2 and k‖ = 1 and dissipated by perpendicular hyperviscosity (ν⊥∇8

⊥
with ν⊥ = 2 × 10−17). There is also an effective Laplacian parallel
viscosity ν‖ = 1.5 × 10−4 because the linear term is upwinded
slightly; ν‖ is chosen to be small enough so that it only dissipates
a small fraction (≈7 per cent) of the total power. The mean injected
power was taken to be ε± = 1, meaning that the turbulence is
balanced and strong. The forcing term is purely in the velocity, and
the magnetic field was not forced so as not to break the magnetic-
flux conservation at the forcing scales.

We define the Elsasser-field increments as

δz±
⊥ = z±

⊥(r0 + r) − z±
⊥(r0), (10)

where r0 is an arbitrary point (arbitrary because we consider ho-
mogeneous turbulence), and r is the separation vector, with length
r and direction r̂ = r/r . The amplitude of the field increment in
equation (10) is δz±

⊥ = |δz±
⊥|, and its direction is δ ẑ±

⊥ = δz±
⊥/δz±

⊥.
The local mean magnetic field Bloc between r0 and r0 + r is defined
as

Bloc = B0 + 1

2
[b⊥(r0) + b⊥(r0 + r)] , (11)

and its direction is B̂loc = Bloc/|Bloc|3. The components of the field
increment and the separation vector in the plane normal to Bloc are

δz±
⊥,N = δz±

⊥ − [
δz±

⊥ · B̂loc

]
B̂loc,

r⊥ = r − [r · B̂loc]B̂loc, (12)

and the directions of these vectors are δ ẑ±
⊥,N = δz±

⊥,N/|δz±
⊥,N| and

r̂⊥ = r⊥/|r⊥|.
The angle between r and the local mean field is defined via

cos θBloc = r̂ · B̂loc. (13)

It is important to point out that this angle is not invariant to the
rescaling in equation (9), and so, to compare the dependence of the
structure functions (Fig. 1b) on this angle to a situation with a given
aspect ratio (or fluctuation level), one must rescale it assuming some
specific aspect ratio a [see equation 9] of the physical box, rather
than the nominal value of 1 used in RMHD simulations. However,
θBloc = 0◦, 90◦ are fixed points under any such rescaling. The angle
between r⊥ and the perpendicular fluctuation δz±

⊥ is defined via

cos θδz±
⊥

= r̂⊥ · δ ẑ±
⊥,N. (14)

If θBloc = 90◦ and θδz±
⊥

= 0◦, then the point separation r is along
the ‘fluctuation direction’, while if θBloc = 90◦ and θδz±

⊥
= 90◦, it

is along the direction perpendicular to both the fluctuation and the
local mean field, which we will call the ‘perpendicular direction’.
If θBloc = 0◦, the separation is along the ‘parallel direction’. The
angles θBloc and θδz±

⊥
, along with the point separation r, define a

locally varying coordinate system referred to the two directions that
we expect to be physically important4.

The nth-order conditional structure function of z±
⊥ at point sepa-

ration r and the pair of angles θBloc , θδz±
⊥

,

Sn,3D

(
θBloc , θδz±

⊥
, r

)
=

〈(
δz±

⊥
)n |θBloc , θδz±

⊥
, r

〉
, (15)

is defined as the average of (δz±
⊥)n at the scale r, with the separation

vector characterized by angles θBloc and θδz±
⊥

. These objects (with
n = 2) have been used by Chen et al. (2012) for analysis of the real
solar-wind turbulence. The conditional structure function defines
the scaling of the fluctuations at all angles to the physically distinct
directions identified above, and provides a natural way to study the
anisotropy in all directions using the same mathematical object.
Our subsequent analysis is based on the calculation of these struc-
ture functions using data from the numerical simulation described
above.

To achieve this, snapshots of the fields in the simulation were
taken at 10 different times separated by more than a turnover time,
viz., every 2 code time units. For each of the snapshots, 8 × 106 pairs

3 Cho & Vishniac (2000) and Maron & Goldreich (2001) pointed out that
in order to pick up the anisotropy with respect to the parallel direction,
one has to use a local mean magnetic field, because critical balance implies
δz±

⊥/vA ∼ λ/l‖. Using a field defined on a larger scale than the scale r of
the fluctuation that one is probing would effectively amount to measuring
the anisotropy with respect to a ‘global’ magnetic field, which reduces the
ability of the method to detect the anisotropy (see Chen et al. 2011). This
justifies the definition in equation (11).
4 It is important to distinguish between the many angles (and aspect ratios)
defined in this paper: θ±, θub are the angles between field increments, sin θ

is the aspect ratio of structures in the local basis, and θBloc , θδz±
⊥

are angles

describing the relative arrangement of fields and separation vectors r . They
are not necessarily the same, although we have argued that θ is determined
by the smaller of θ± and θub.
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Figure 1. (a) The conditional second-order structure functions [equation 15] plotted for different angle intervals. In dark blue (solid line) is the structure
function S⊥

2,3D in the angle bin most perpendicular to both the local mean magnetic field and the δz+
⊥ fluctuations, in green (solid line), the structure function

Sfluc
2,3D in the angle bin closest to the direction δ ẑ+

⊥, and in red (solid line), the structure function S
‖
2,3D in the angle bin closest to the parallel direction B̂loc.

In cyan (dotted lines), are the structure functions in the whole range of θδz+
⊥

bins, with the angle to the mean field 80◦ ≤ θBloc < 90◦, and in magenta (dotted

lines), the structure functions in the whole range of θBloc bins, but with the angle to the fluctuation 0◦ ≤ θδz+ ≤ 10◦ bin. The dotted horizontal lines show
the values of the structure function for which the ‘statistical eddies’ in Fig. 2 were calculated, while the vertical dashed lines show the range over which the
structure function scaling exponents were measured. (b) The second-order structure function exponents ζ2(θBloc , θδz±

⊥
) and the associated errors, in all angle

bins. It should be noted that to compare directly with a real situation (e.g. the solar wind), the angle θBloc must be rescaled assuming a specific physical aspect
ratio of the simulation box rather than the nominal aspect ratio of 1 [see equation 9].

of points r0, r0 + r were chosen at each of 32 different logarith-
mically spaced separation scales r. The direction r̂ was uniformly
distributed over a sphere. For each pair of points, the Elsasser-
field increment amplitudes δz±

⊥ and the three angles θBloc , θδz±
⊥

were
recorded. All angles were collapsed on to the interval [0◦, 90◦]. The
structure function values reported here are the means over all 10
snapshots, and the error bars show the standard deviation from the
means calculated for each snapshot.

To calculate the nth-order conditional structure functions in
equation (15), we bin the field-increment amplitudes δz±

⊥ by the
pair of angles θBloc , θδz±

⊥
. Here we will only show the struc-

ture functions of δz+
⊥; the δz−

⊥ structure functions are the same
because the turbulence is balanced. The conditional average in
equation (15) was calculated over an angle bin 10(i − 1)◦ ≤ θBloc <

10i◦, 10(j − 1)◦ ≤ θδz±
⊥

< 10j ◦, where i and j range from 1 to 9.
Some special cases of this structure function deserve particular at-
tention and particular notation:

i = 1 : S
‖
n,3D, ‘parallel’ structure function,

i = 9, j = 1 : Sfluc
n,3D, ‘fluctuation − direction’ structure

function,

i = 9, j = 9 : S⊥
n,3D, ‘perpendicular’ structure function.

These bins correspond to fluctuations aligned most closely with the
physical directions B̂loc (parallel), δ ẑ±

⊥ (fluctuation) and B̂loc × δ ẑ±
⊥

(perpendicular). We will refer to the scales at which those particular
structure functions are sampled as the parallel scale l‖, fluctuation-
direction scale ξ , and perpendicular scale λ, respectively.

3 SE C O N D - O R D E R C O N D I T I O NA L
S T RU C T U R E F U N C T I O N S

Fig. 1 shows the conditional second-order structure functions at
different angles θBloc and θδz+ . The choice of the range of scales
over which the structure functions are fit to power laws affects the
measured exponents, so a physical reason for choosing a particular
range is needed. In Mallet, Schekochihin & Chandran (2015), it was
found that the probability distribution of the critical-balance param-
eter χ± .= δz∓l±‖ sin θ±/λvA is nearly perfectly scale invariant over
the range 0.09 < r < 0.92, which can therefore be interpreted as
the universal-scaling interval of the critically balanced turbulence.
We therefore fit the structure functions to power laws over this
range of scales. We define ζn(θBloc , θδz±

⊥
) as the scaling exponent of

the nth-order structure function at that pair of angles, viz.,

Sn,3D

(
θBloc , θδz±

⊥

)
∝ r

ζn(θBloc ,θ
δz±⊥

)
. (16)

Furthermore, we define ζ ‖
n , ζ fluc

n and ζ⊥
n as the scaling exponents for

the parallel, fluctuation-direction, and perpendicular structure func-
tions, respectively, as defined in the previous section. The scalings
for the second-order structure functions were

ζ⊥
2 = 0.50 ± 0.03, ζ fluc

2 = 0.69 ± 0.03, ζ
‖
2 = 0.98 ± 0.03,

(17)

where the errors indicate standard deviations from the mean expo-
nent obtained using the 10 snapshots. Thus, the turbulence exhibits
significant scaling anisotropy (i.e. different scalings) with respect to
all three directions identified here. The exponent in the parallel di-
rection is very close to 1, in good agreement with the critical-balance
scaling from equation (2). Thus, the parallel scaling ζ

‖
2 is consistent

with the critical-balance conjecture. The difference between ζ⊥
2 and
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Figure 2. From top to bottom, ‘statistical eddies’ (surfaces of constant
second-order structure function) at structure function values corresponding
to the outer scale, roughly halfway down the inertial range, and at the bottom
of the inertial range, respectively. These values are shown as three horizontal
dotted lines in Fig. 1(a).

ζ fluc
2 is consistent with the idea that the turbulent fluctuations be-

come progressively more aligned as they cascade to smaller scales
(cf. Boldyrev 2006, who predicts ζ⊥

2 = 1/2 and ζ fluc
2 = 2/3).

Based on surfaces of constant second-order structure function
[equation 15], one can visualize a ‘statistical eddy’, showing the 3D
structure of turbulent correlations, in the same manner as was done
for solar-wind data by Chen et al. (2012). This is done in Fig. 2
for structure function values corresponding to the outer scale, mid-

Figure 3. The exponents of conditional nth-order structure functions [equa-
tion 15] in the perpendicular (blue), fluctuation (green) and parallel (red)
directions, ζ⊥

n , ζ fluc
n and ζ

‖
n , respectively. The lowest black dotted line is

equation (18) with β = 0.71, and the middle and highest black dotted lines
are that equation with the same β, divided by γ = 0.69 and α = 0.49,
respectively.

way through the inertial range, and near the bottom of the inertial
range. Statistically, due to the isotropic forcing, the structures at
large scales are isotropic with respect to the local basis5, but become
increasingly ‘pancake’-, or ‘ribbon’-like deeper in the inertial range.

One might expect some level of anisotropy imposed by con-
straints due to the solenoidality of the Elsasser fields. This issue is
discussed in the appendix, where we find that the solenoidality does
not directly constrain the conditional structure function.

4 3 D IN T E R M I T T E N C Y

As we showed in the Introduction, to exhibit scaling anisotropy
within the local perpendicular plane as seen in Section 3, Elsasser
fields must have non-self-similar scale-dependent probability dis-
tribution functions. In this section, we study the scale dependence
of the distribution functions of the field increments: the intermit-
tency of the conditional structure functions, as a function of the two
local angles θBloc and θδz+ . One common measure of intermittency
is the non-linear dependence on n of the exponents of the nth-order
structure functions. We extend this approach by measuring ζ ‖

n , ζ fluc
n

and ζ⊥
n – the exponents of the parallel, fluctuation-direction, and

perpendicular conditional structure functions defined in Section 2.
These exponents are shown in Fig. 3 up to n = 5. The structure func-
tions from which these have been calculated are shown in Fig. B1
in Appendix B. An immediate conclusion is that not only is RMHD
turbulence intermittent, but it is perhaps differently intermittent in
all three directions. We will study these scalings in more detail in
this section.

Recently, a new model of the intermittency of Alfvénic turbulence
has been proposed by Chandran et al. (2015). The model involves
two archetypal non-linear interactions. First, occasional balanced

5 Note that the parallel and perpendicular correlation lengths appear similar
only because we use the nominal box aspect ratio 1. This can be arbitrarily
rescaled in RMHD [see equation 9].
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collisions between structures of similar amplitudes δz+
⊥ ∼ δz−

⊥ re-
duce the field amplitudes. This motivates assuming a log-Poisson
distribution for δz±

⊥. Secondly, in imbalanced collisions with δz±
⊥ 	

δz∓
⊥, the amplitudes of the fluctuations remain constant while the

lower amplitude field is sheared into alignment and its perpendic-
ular scale λ reduced. The model incorporates critical balance and
dynamic alignment, and predicts that the perpendicular structure
function exponents are

ζ⊥
n = 1 − βn, (18)

where β ≈ 0.691 is derived via a number of assumptions. Let us fit
our perpendicular exponents to this formula, and determine β from
the fit. The best-fitting value6 is

β = 0.71+0.01
−0.02, (19)

which is in remarkably good agreement with the Chandran et al.
(2015) model.

It is clear from Fig. 3 that the turbulence is also highly intermittent
in the fluctuation (green curve) and parallel (red curve) directions.
A natural question is how the parallel and fluctuation-direction scal-
ings are related to the perpendicular ones. Chandran et al. (2015)
make no prediction for ζ ‖

n or ζ fluc
n . Suppose that, in some detailed

sense, the parallel and fluctuation-direction coherence scales l‖ and
ξ of each turbulent fluctuation themselves have power-law depen-
dence on the perpendicular scale λ of that fluctuation, viz.,

l‖ ∼ λα, ξ ∼ λγ . (20)

In our terminology, this is equivalent to stating that the degree of
anisotropy between the parallel and perpendicular or fluctuation and
perpendicular directions is not itself intermittent, meaning that the
scaling of the aspect ratios

sin φ = λ

l‖
∝ λ1−α, sin θ = λ

ξ
∝ λ1−γ , (21)

is independent of the amplitude of the fluctuations. This is the same
as conjecturing the following relationships between the scaling ex-
ponents of structure functions in different directions:

ζ ‖
n = ζ⊥

n

α
, ζ fluc

n = ζ⊥
n

γ
. (22)

From the measured scaling exponents in Fig. 3, we find that the
best-fitting values are

α = 0.49 ± 0.03, γ = 0.69 ± 0.03, (23)

where the errors are evaluated as the standard deviation from
the mean quantity obtained using the 10 snapshots. The result-
ing ‘model’ curves in equation (22) are also plotted on Fig. 3, with
equation (18) used for ζ⊥

n . While the curves in equation (22) are rel-
atively close to the measured scalings, the quality of the fits is worse
than in the perpendicular direction – the model curves are not within
the error bars for every n measured, for any values of α or γ . This
implies that the characteristic aspect ratios in equation (21) have
scalings that depend on the amplitude of the fluctuations, if perhaps
only slightly. In the next section, we quantify this dependence and
argue that it makes physical sense.

6 Based on minimizing the sum of the squared residuals weighted by the
standard deviation of the measurements at each order (Aitken 1936). The
errors are evaluated by varying β until the curve given by equation (18) fails
to fall completely within the error bars of the measurements of the individual
exponents.

Figure 4. The aspect-ratio scaling exponents 1 − αn (red, solid line) and 1
− γ n (green, solid line) as a function of n [equation 26]. Error bars show the
standard deviation of the mean calculated from the 10 snapshots. Plotted in
dotted black lines are constants 1 − α = 0.51 and 1 − γ = 0.31, defined in
equation (22) and used for the dotted curves in Fig. 3.

5 IN T E R M I T T E N C Y O F A N I S OT RO P Y

The dependence of the scaling of the aspect ratios in equation (21)
on the amplitude of the fluctuations is a symptom of intermittency of
anisotropy: the anisotropy cannot simply be rescaled in a uniform
way because fluctuations with different amplitudes at the same
scale will have different typical aspect ratios. If we accept that
perpendicular anisotropy is related to alignment as argued in the
Introduction [equation 6], this is consistent with the physical model
of the non-linear interactions by Chandran et al. (2015), according
to which, in an imbalanced collision, the z+

⊥ and z−
⊥ fields align to

within an angle inversely proportional to the amplitude of the higher
amplitude fluctuation. This is also consistent with the finding of
Mallet et al. (2015) that the alignment angle between δz+

⊥ and δz−
⊥

is anticorrelated with the amplitude at each scale. In fact, recalling
that Mallet et al. (2015) found the critical-balance parameter

χ± .= τA

τnl

.= l±‖ δz∓
⊥ sin θ±

vAλ
∼ δz∓

⊥ sin θ

vA sin φ
(24)

to have a very precisely scale-invariant distribution, we realize that
the simple model in equations (20)–(21) cannot be strictly correct:
since we know that δz∓

⊥ is intermittent (non-scale invariant), at least
one of sin θ and sin φ must also be intermittent for the distribution
of χ± to be scale invariant.

We quantify the intermittency of the anisotropy by generalizing
equation (22) to

ζ ‖
n = ζ⊥

n

αn

, ζ fluc
n = ζ⊥

n

γn

. (25)

Then the aspect-ratio scalings inferred from the nth-order condi-
tional structure function scalings using the equation above are given
by

sin φn ∝ λ1−αn , sin θn ∝ λ1−γn , (26)

so we are now allowing some amplitude dependence of these scal-
ings. Fig. 4 shows these scalings as a function of n. Both sin φn and
sin θn have scaling exponents that increase with n, meaning that the
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Figure 5. (a) The alignment measures sin θub
n [equation 27] are plotted, going from n = 0.5 (blue) to n = 5 (red). (b) Comparison between the scaling

exponents of sin θub
n (red points), the scaling exponents of sin θ±

n (green points) and the perpendicular alignment exponents (1 − γ n) (black line) defined in
equation (26) (and plotted in Fig. 4).

fluctuation amplitude and sin θ (and, therefore, fluctuation ampli-
tude and the alignment angle as measured by, for example, sin θ±)
are anticorrelated at each scale, confirming the result of Mallet et al.
(2015) and the expectation based on the physical picture of non-
linear interactions in the model of Chandran et al. (2015). From the
range of variation exhibited by αn and γ n in Fig. 4, we conclude
that the parallel aspect ratio sin φn exhibits only slight intermittency,
while the perpendicular aspect ratio sin θn is more significantly in-
termittent. Note, however, that the slight variation of 1 − αn with
n is nevertheless likely to be real: Mallet et al. (2015) found that
the non-linear time alone [equation 3] was not as precisely scale
invariant as χ± [equation 24].

6 C O M PA R I S O N B E T W E E N D I F F E R E N T
M E A S U R E S O F A L I G N M E N T

Had γ n been independent of n (i.e. had the perpendicular aspect ratio
sin θn been non-intermittent), the alignment within the sheetlike
structures would also have been non-intermittent, and it would not
have mattered what method one used to measure the scaling of the
alignment angle. But γ n is intermittent, and so the precise measure
of alignment does matter. Mason et al. (2006) calculated θub

n defined
by

sinn θub
n ≡ 〈|δu⊥ × δb⊥|n〉

〈|δu⊥|n|δb⊥|n〉 , (27)

with n = 1, and found that θub
1 ∼ λ0.25, which they interpreted as vin-

dication of the Boldyrev (2006) phenomenological theory (which
was not concerned with intermittency). In contrast, Beresnyak &
Lazarian (2006) measured

sin θ̃ =
〈 |δz+

⊥ × δz−
⊥|

|δz+
⊥||δz−

⊥|
〉

, (28)

and found that this quantity exhibited virtually no scale dependence,
showing that how one weights the angle by the amplitude of the

fluctuation matters a great deal. We may also define another set of
measures of alignment, via

sinn θ±
n ≡ 〈|δz+

⊥ × δz−
⊥|n〉

〈|δz+
⊥|n|δz−

⊥|n〉 . (29)

Fig. 5 shows the scale dependence of sin θub
n for 0.5 ≤ n ≤ 5.

The fact that the scaling of these alignment measures depends on
how one weights them with amplitude is consistent with the idea
that the alignment angle and amplitude are anticorrelated at each
scale. In the foregoing, we calculated sin θn ∝ λ(1−γn) in terms of
the scalings of the 3D conditional structure function, and argued
that θn ∼ θub

n ∼ θ±
n . In Fig. 5, the scaling exponents of sin θub

n and
sin θ±

n are compared with 1 − γ n, where γ n are the perpendicular
alignment exponents defined in equation (26) and plotted in Fig. 4.
The agreement is not perfect, but the three different measures show
the same trend, and agree at high n, suggesting, as we argued in the
Introduction, that the same physical phenomenon is being measured
using our technique as in previous work.

7 D I SCUSSI ON

The results presented in this paper show that strong Alfvénic turbu-
lence scales highly anisotropically with respect to all three physi-
cally relevant directions: parallel (B̂loc), fluctuation (δ ẑ±

⊥) and per-
pendicular (δ ẑ±

⊥ × B̂loc). This anisotropy can be explained using
two key physical ideas. The critical-balance conjecture underpins
the parallel anisotropy, while the anisotropy within the perpendic-
ular plane can be linked with scale-dependent alignment of the
fluctuations.

The intermittent scalings ζ⊥
n , ζ fluc

n , ζ ‖
n of the conditional structure

functions in these three directions reported here shed further light
on the physics of critical balance and alignment. The perpendicular
scalings agree closely with the predictions of the model of Chandran
et al. (2015). The aspect-ratio scaling sin θn = λ/ξ ∝ λ1−γn can be
inferred from the ratio of the scaling exponents of the perpendicular-
and fluctuation-direction structure functions, γn = ζ⊥

n /ζ fluc
n , and we

find that the scaling exponent 1 − γ n is an increasing function
of n. This implies that the alignment angle is anticorrelated with
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amplitude at each scale, i.e. the alignment angle is intermittent (not
scale invariant). This promotes the view that alignment is set by
mutual shearing of the Elsasser fields, which naturally leads to such
anticorrelation (Chandran et al. 2015). Meanwhile, the scaling of
the aspect ratio between the perpendicular and parallel directions,
sin φn ∝ λ1−αn varies only slightly with n (although the results of
Mallet et al. 2015 suggest that this variation is real).

In the solar wind, Chen et al. (2012) applied the 3D condi-
tional structure function technique and found essentially scale-
independent anisotropy between the perpendicular and fluctuation
directions in fast solar wind. Wicks et al. (2013) also found essen-
tially no scaling of the alignment angle in the inertial range of the
fast solar wind. Chandran et al. (2015) provide a review of various
different solar-wind measurements, showing that there appears to
be a significant spread in the measured structure function expo-
nents, possibly depending on whether the measurement was from
the fast or slow solar wind. This could also affect the measure-
ment of the alignment. The difference between the fast-solar-wind
measurements in Wicks et al. (2013), Chen et al. (2012) and our sim-
ulations appears to be the presence of significant anisotropy within
the perpendicular plane (or equivalently, alignment) at the outer
scale in the solar wind, but not in our simulations. This difference
is also evident in Verdini & Grappin (2015), who link differences
in the anisotropy of conditional structure functions to the expansion
of the solar wind. The effect of this expansion can clearly be seen at
the outer scale of their expanding box simulation, i.e. at scales where
the dynamics of the cascade have not yet affected the anisotropy,
but at the smaller scales anisotropy similar to that measured here is
observed. Finally, Osman et al. (2014) have previously considered
the intermittency of the parallel structure functions in the solar wind
using the conditional structure function method, but obtained dif-
ferent results to those presented here. The reason for this difference
requires further investigation.

Further measurements of the anisotropy and intermittency in the
solar wind and of the dependence of the intermittent scalings in
all directions on the solar-wind conditions would allow for new
comparisons between the real turbulence and the numerical simula-
tions presented here, and improve our understanding of the physical
processes underlying dynamic alignment, critical balance, and in-
termittency. What appears to be suggested by the detailed study
undertaken here is that all of these phenomena are very much inter-
twined.
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A P P E N D I X A : SO L E N O I DA L I T Y A N D
PERPENDI CULAR ANI SOTROPY

Since the Elsasser fields are 2D solenoidal, ∇⊥ · z±
⊥ = 0, one might

expect some degree of anisotropy with respect to the fluctuation di-
rection within the perpendicular plane due to just this kinematic
property. In this appendix, we will outline the constraints that
solenoidality places on the turbulence and to what extent this is re-
lated to anisotropic scalings of the conditional structure functions,
equation (15).

We work within the perpendicular plane. We will use a basis
for each separation r⊥ where the x direction points along r⊥ and
the y direction is transverse to it. Since z±

⊥ are globally isotropic
(within the (x, y) plane perpendicular to the global mean magnetic
field), the nth-order two-point structure function of δz±

⊥, the rank-n
tensor 〈δz±

⊥,i δz
±
⊥,j δz

±
⊥,k . . .〉, can be expressed as a sum of terms,

each with n vector indices and composed of products of Kronecker
deltas δij and unit vectors r̂⊥,i , all with distinct indices. Moreover,
the structure function must be of such a form that it is invariant
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under interchange of indices. For example, the tensor second-order
structure function is〈
δz±

⊥,i δz
±
⊥,j

〉 = S2,T(r⊥)(δij − r̂⊥,i r̂⊥,j ) + S2,L(r⊥)r̂⊥,i r̂⊥,j , (A1)

where r⊥ = |r⊥| and the longitudinal S2,L and transverse S2,T scalar
structure functions are

S2,L =
〈(

δz±
⊥ · r̂⊥

)2
〉

, S2,T =
〈(

δz±
⊥× r̂⊥

)2
〉

. (A2)

The solenoidality constraint is imposed by taking the divergence
∂/∂ri of equation (A1) and setting it equal to zero. This gives the
von Kármán relation in 2D (Batchelor 1953):

∂

∂r⊥
(r⊥S2,L) = S2,T. (A3)

This means that in the inertial range, where S2,L and S2,T are power
laws, they must scale in the same way ∝ r2a

⊥ , and have a certain
ratio (2a + 1) between them:

S2,T = Dr2a
⊥ , S2,L = D

2a + 1
r2a
⊥ , (A4)

where D is a constant. Thus there is a scale-independent level
of ‘kinematic’ anisotropy between the transverse and longitudinal
structure functions.

The third-order tensor structure function again depends on two
scalar functions of r⊥, each multiplying one of the only two pos-
sible rank-3 tensors, r̂⊥,i r̂⊥,j r̂⊥,k and δij r̂⊥,k + δjk r̂⊥,i + δki r̂⊥,j .
Solenoidality again amounts to setting the divergence equal to zero,
and gives a homogenous constraint that guarantees that all compo-
nents of the third-order structure function are either zero or have the
same scaling, but allows for scale-independent ratios between the
components, similar to the second-order case. At higher orders than
3, there are no more solenoidality constraints, because structure
functions contain terms such as 〈z±

⊥,i(0)z±
⊥,j (0)z±

⊥,k(r⊥)z±
⊥,l(r⊥)〉

whose divergence does not vanish (L’vov, Podivilov & Procaccia
1997; Hill 2001).

Using the second-order structure function as an example, the
longitudinal and transverse structure functions S2,L, S2,T are not

directly related to the conditional structure function S2,3D defined
in equation (15). S2,L and S2,T are moments of the joint distribution
p(δz±

⊥, θδz±
⊥
|r⊥) of the field-increment amplitude δz±

⊥ and the angle
θδz±

⊥
, conditional on the separation distance r⊥, viz.,

S2,L(r⊥) =
∫ ∞

0

∫ 2π

0

(
δz±

⊥
)2

cos2
(
θδz±

⊥

)

× p
(
δz±

⊥, θδz±
⊥
|r⊥

)
dδz±

⊥dθδz±
⊥
,

S2,T(r⊥) =
∫ ∞

0

∫ 2π

0

(
δz±

⊥
)2

sin2
(
θδz±

⊥

)

× p
(
δz±

⊥, θδz±
⊥
|r⊥

)
dδz±

⊥dθδz±
⊥
. (A5)

We have shown that these functions must have the same scaling
due to solenoidality. In contrast, the conditional structure function
defined by equation (15) (ignoring for now the dependence on the
third dimension via the angle θBloc ) is the moment of the distribution
of the field increment amplitude δz±

⊥ conditional on the angle θδz±
⊥

and the separation distance r⊥:

S2,3D

(
r⊥, θδz±

⊥

)
=

∫ ∞

0

(
δz±

⊥
)2

p
(
δz±

⊥|θδz±
⊥
, r⊥

)
dδz±

⊥. (A6)

Thus, in general, S2,3D coincides with neither S2,L at θδz±
⊥

= 0 nor
with S2,T at θδz±

⊥
= π/2. Therefore, the scale-dependent anisotropy

of the turbulence within the perpendicular plane as measured by
S2,3D in Fig. 1 cannot be expressed simply in terms of the solenoidal-
ity constraints.

APPENDI X B: nT H - O R D E R C O N D I T I O NA L
S T RU C T U R E F U N C T I O N PL OT S

For completeness, the plots of the measured nth-order structure
functions are shown here, for orders n = 0.5 to n = 5.0, along with
the fitted slopes whose exponents were shown in Fig. 3.
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Figure B1. The nth-order conditional structure functions (see equation 16) in the perpendicular (top, blue), fluctuation (middle, green) and parallel (bottom,
red) directions, from n = 0.5 to n = 5.0. Black dotted lines show the power laws with the exponents given in Fig. 3.
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