624 research outputs found

    Analysis of organogenic competence of cotyledons of Jatropha curcas and their in vitro histological behavior

    Get PDF
    Using cut pieces cotyledons from germinating zygotic embryos of Jatropha curcas, we monitored the series of anatomical events leading to the generation of shoot through organogenesis by histological analysis. 14 days old cotyledons that were pre-cultured in a half strength Murashige and Skoog (MS) media supplemented with 100 mg/L myoinositol and 10 mg/L thiamine HCl, were cultured in organogenic competence induction media (CIM) comprising of MS salts with 1.5 mg/L benzyl adenine (BA) and 0.05 mg/L indole-3-butyric acid (IBA) and incubated for the induction of organogenic competence. Following their sequential transfer to shoot induction media (containing MS + 1.5 mg/L BA, 0.05 mg/L IBA and 0.5 mg/L GA3); shoot elongation media (containing MS + 0.3 mg/L BA) and rooting media (containing half strength MS + IBA at different concentrations), we selected individual explants and subjected them to histological analysis in order to study the morphological changes occurring during organogenesis. Our findings show that to induce organogenesis using cut pieces of cotyledons, these tissues must be harvested at least by the 14th day following germination. Optimal organogenic competence was attained after 21 days incubation period in the dark where most of the explants showed evidence of protruding shoots surrounded by calli with various morphological features. Up to 53.91% of the total explants cultured in this study produced well defined shoots with each explant producing an average number of 1.5 shoots bearing two to eight leaves. We recorded the highest percentage of root formation, which stood at 27.50% when the shoots were cultured in a rooting media containing 0.3 mg/L IBA. Histological analysis of the different events occurring during the process of organogenesis suggest that the protuberances arising from parenchymatous cells and perhaps bundle sheath forming meristematic centres acquiring organogenic competence have a multicellular origin, indicating that the regeneration process takes place through direct organogenesis.Key words: Jatropha curcas, organogenesis, auxins, histological analysis

    The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory

    Full text link
    We determine a next-to-leading order result for the correlator of the shear stress operator in high-temperature Yang-Mills theory. The computation is performed via an ultraviolet expansion, valid in the limit of small distances or large momenta, and the result is used for writing operator product expansions for the Euclidean momentum and coordinate space correlators as well as for the Minkowskian spectral density. In addition, our results enable us to confirm and refine a shear sum rule originally derived by Romatschke, Son and Meyer.Comment: 16 pages, 2 figures. v2: small clarifications, one reference added, published versio

    Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products

    Get PDF
    This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio

    Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28

    Get PDF
    An alkalitolerant fungus, Aspergillus fumigatus strain MA28 produced significant amounts of cellulase-free xylanase when grown on a variety of agro-wastes. Wheat bran as the sole carbon source supported higher xylanase production (8,450 U/L) than xylan (7,500 U/L). Soybean meal was observed to be the best nitrogen source for xylanase production (9,000 U/L). Optimum medium pH for xylanase production was 8 (9,800 U/L), though, significant quantities of the enzyme was also produced at pH 7 (8,500 U/L), 9 (8,200 U/L) and 10 (4,600 U/L). The xylanase was purified by ammonium sulphate precipitation and carboxymethyl cellulose chromatography, and was found to have a molecular weight of 14.4 kDa with a Vmax of 980 μmol/min/mg of protein and a Km of approximately 4.9 mg/mL. The optimum temperature and pH for enzyme activity was 50 °C and pH 8, respectively. However, the enzyme also showed substantial residual activity at 60–70 °C (53–75%) and at alkaline pH 8–9 (56–88%)

    Fungal model systems and the elucidation of pathogenicity determinants

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.This review was carried out by members of the EU-Initial Training Network Ariadne (PITN-GA-2009-237936), which provided financial support for C.B., S.D., M.E.G., E.G., E.M., P.V.M., M.M., V.N., M.F.A.N., T.O., M.O.R., K.S. and L.W
    corecore