1,939 research outputs found

    Quantum Control Landscapes

    Full text link
    Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrodinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.Comment: 45 pages, 15 figures; International Reviews in Physical Chemistry, Vol. 26, Iss. 4, pp. 671-735 (2007

    A new formulation for symbolic regression to identify physico-chemical laws from experimental data

    Get PDF
    A modification to the mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed with the aim of identification of physical models from noisy experimental data. In the proposed formulation, a binary tree in which equations are represented as directed, acyclic graphs, is fully constructed for a pre-defined number of layers. The introduced modification results in the reduction in the number of required binary variables and removal of redundancy due to possible symmetry of the tree formulation. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the numbers of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was proven to be successful in identifying the correct physical models describing the relationship between shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of chemical reactions. Future work will focus on addressing the limitations of the present formulation and solver to enable extension of target problems to larger, more complex physical models.EPSRC EP/R009902/

    General entanglement

    Get PDF
    The paper contains a brief review of an approach to quantum entanglement based on analysis of dynamic symmetry of systems and quantum uncertainties, accompanying the measurement of mean value of certain basic observables. The latter are defined in terms of the orthogonal basis of Lie algebra, corresponding to the dynamic symmetry group. We discuss the relativity of entanglement with respect to the choice of basic observables and a way of stabilization of robust entanglement in physical systems.Comment: 7 pages, 1 figure,1 tabe, will be published in special issue of Journal of Physics (Conference Series) with Proceedings of CEWQO-200

    Low-beta cortico-pallidal coherence decreases during movement and correlates with overall reaction time

    Get PDF
    Beta band oscillations (13-30 Hz) are a hallmark of cortical and subcortical structures that are part of the motor system. In addition to local population activity, oscillations also provide a means for synchronization of activity between regions. Here we examined the role of beta band coherence between the internal globus pallidus (GPi) and (motor) cortex during a simple reaction time task performed by nine patients with idiopathic dystonia. We recorded local field potentials from deep brain stimulation (DBS) electrodes implanted in bilateral GPi in combination with simultaneous whole-head magneto-encephalography (MEG). Patients responded to visually presented go or stop-signal cues by pressing a button with left or right hand. Although coherence between signals from DBS electrodes and MEG sensors was observed throughout the entire beta band, a significant movement-related decrease prevailed in lower beta frequencies (∼13-21 Hz). In addition, patients' absolute coherence values in this frequency range significantly correlated with their median reaction time during the task (p = 0.003, r = 0.89). These findings corroborate the recent idea of two functionally distinct frequency ranges within the beta band, as well as the anti-kinetic character of beta oscillations

    Comparison of human mammary epithelial cells immortalized by simian virus 40 T-Antigen or by the telomerase catalytic subunit

    Get PDF
    We directly compared two methods of immortalizing human mammary epithelial cells (HMECs). Cells were transfected with an expression plasmid either for hTERT, the catalytic subunit of telomerase, or for the simian virus 40 (SV40) early region genes. Under standard culture conditions, HMECs were not immortalized by hTERT unless they had spontaneously ceased expression of the p16(INK4a) tumor suppressor gene. Untransfected HMECs had low levels of telomerase expression, and immortalization by both methods was associated with an increase in telomerase activity and prevention of telomere shortening. SV40-induced immortalization was accompanied by aberrant differentiation, loss of DNA damage response, karyotypic instability and, in some cases, tumorigenicity. hTERT-immortalized cells had fewer karyotypic changes, but had intact DNA damage responses, and features of normal differentiation. Although SV40-immortalized cells are useful for studies of carcinogenesis, hTERT-immortalized cells retain more properties of normal cells.NHMR

    Attenuation of leukocyte sequestration by selective blockade of PECAM-1 or VCAM-1 in murine endotoxemia

    Get PDF
    Background: Molecular mechanisms regulating leukocyte sequestration into the tissue during endotoxemia and/or sepsis are still poorly understood. This in vivo study investigates the biological role of murine PECAM-1 and VCAM-1 for leukocyte sequestration into the lung, liver and striated skin muscle. Methods: Male BALB/c mice were injected intravenously with murine PECAM-1 IgG chimera or monoclonal antibody (mAb) to VCAM-1 ( 3 mg/kg body weight); controls received equivalent doses of IgG2a ( n = 6 per group). Fifteen minutes thereafter, 2 mg/kg body weight of Salmonella abortus equi endotoxin was injected intravenously. At 24 h after the endotoxin challenge, lungs, livers and striated muscle of skin were analyzed for their myeloperoxidase activity. To monitor intravital leukocyte-endothelial cell interactions, fluorescence videomicroscopy was performed in the skin fold chamber model of the BALB/c mouse at 3, 8 and 24 h after injection of endotoxin. Results: Myeloperoxidase activity at 24 h after the endotoxin challenge in lungs (12,171 +/- 2,357 mU/g tissue), livers ( 2,204 +/- 238 mU/g) and striated muscle of the skin ( 1,161 +/- 110 mU/g) was significantly reduced in both treatment groups as compared to controls, with strongest attenuation in the PECAM-1 IgG treatment group. Arteriolar leukocyte sticking at 3 h after endotoxin (230 +/- 46 cells x mm(-2)) was significantly reduced in both treatment groups. Leukocyte sticking in postcapillary venules at 8 h after endotoxin ( 343 +/- 69 cells/mm(2)) was found reduced only in the VCAM-1-mAb-treated animals ( 215 +/- 53 cells/mm(2)), while it was enhanced in animals treated with PECAM-1 IgG ( 572 +/- 126 cells/mm(2)). Conclusion: These data show that both PECAM-1 and VCAM-1 are involved in endotoxin-induced leukocyte sequestration in the lung, liver and muscle, presumably through interference with arteriolar and/or venular leukocyte sticking. Copyright (C) 2004 S. Karger AG, Basel

    Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    Get PDF
    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation

    Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit

    Full text link
    Traditionally, quantum entanglement has played a central role in foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can exhibit results at odds with classical behavior. These discrepancies increase exponentially with the number of entangled particles. When entanglement is extended from just two quantum bits (qubits) to three, the incompatibilities between classical and quantum correlation properties can change from a violation of inequalities involving statistical averages to sign differences in deterministic observations. With the ample confirmation of quantum mechanical predictions by experiments, entanglement has evolved from a philosophical conundrum to a key resource for quantum-based technologies, like quantum cryptography and computation. In particular, maximal entanglement of more than two qubits is crucial to the implementation of quantum error correction protocols. While entanglement of up to 3, 5, and 8 qubits has been demonstrated among spins, photons, and ions, respectively, entanglement in engineered solid-state systems has been limited to two qubits. Here, we demonstrate three-qubit entanglement in a superconducting circuit, creating Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with quantum state tomography. Several entanglement witnesses show violation of bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of encoding, decoding and error-correcting steps in a feedback loop will be the next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease
    corecore