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Abstract 

We directly compared two methods of immortalizing human mammary epithelial cells 

(HMECs). Cells were transfected with an expression plasmid either for hTERT, the catalytic 

subunit of telomerase, or for the simian virus 40 (SV40) early region genes. Under standard 

culture conditions, HMECs were not immortalized by hTERT unless they had spontaneously 

ceased expression of the p16INK4a tumor suppressor gene. Untransfected HMECs had low 

levels of telomerase expression, and immortalization by both methods was associated with an 

increase in telomerase activity and prevention of telomere shortening. SV40-induced 

immortalization was accompanied by aberrant differentiation, loss of DNA damage response, 

karyotypic instability and, in some cases, tumorigenicity. hTERT-immortalized cells had 

fewer karyotypic changes, but had intact DNA damage responses, and features of normal 

differentiation. Although SV40-immortalized cells are useful for studies of carcinogenesis, 

hTERT-immortalized cells retain more properties of normal cells.  
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Introduction 

Cultured human mammary epithelial cells (HMECs) are an important in vitro model 

system for normal mammary epithelium. However, the finite proliferative capacity of normal 

cells (Hayflick and Moorhead, 1961) limits the number of cells that can be grown from 

normal tissues. To overcome this limitation, HMECs have been immortalized by a variety of 

methods. These include exposure to chemical carcinogens such as benzo(a)pyrene (Stampfer 

and Bartley, 1985), transduction with DNA tumor viral oncogenes (Band et al., 1990; Band et 

al., 1991; Bartek et al., 1991), mutant p53 (Cao et al., 1997; Gao et al., 1996; Gollahon and 

Shay, 1996), or the ZNF217 gene (Nonet et al., 2001), gamma irradiation (Wazer et al., 

1994), and the induction of telomerase activity (Elenbaas et al., 2001; Farwell et al., 2000; 

Kiyono et al., 1998; Ramirez et al., 2001; Stampfer et al., 2001). 

Under standard culture conditions, HMECs have an unusual pattern of growth that has 

not been observed for any other cell type. Primary HMECs proliferate for a small number of 

population doublings (PD) before entering a growth arrest phase, termed "selection" where 

the cells exhibit the large, flattened morphology characteristic of senescence (Foster and 

Galloway, 1996; Stampfer, 1985; Stampfer and Bartley, 1985). These arrested cell 

populations frequently give rise to outgrowths of small, rapidly dividing cells, termed post-

selection HMECs. Post-selection HMECs have low or undetectable levels of p16INK4a 

expression, associated with hypermethylation of CpG islands in the p16INK4a gene (Brenner et 

al., 1998; Foster et al., 1998; Huschtscha et al., 1998). These cells proliferate for up to 40 or 

50 PDs before eventually undergoing a second growth arrest that has some features of 

senescence, and was recently called "agonescence" (Romanov et al., 2001).  

The telomere shortening occurring with each division of normal somatic cells may 

eventually trigger the onset of senescence (Harley, 1991; Olovnikov, 1973). Telomeres 

consist of repetitive DNA ([TTAGGG]n in vertebrates) at the ends of chromosomes which, 



C. Toouli et al.  page 4 
 

together with specific binding proteins, act as protective cap structures (Blackburn, 1991). In 

cells of the germ line, telomere shortening is prevented by telomerase (Greider and 

Blackburn, 1985), a holoenzyme complex that contains a number of subunits including an 

RNA template molecule and a catalytic subunit (TElomerase Reverse Transcriptase; TERT). 

Telomerase adds TTAGGG repeats to telomeres by reverse transcribing the RNA template 

and thus compensates for the loss of telomeric DNA associated with normal cell division 

(Nugent and Lundblad, 1998). Most normal human cells are telomerase-negative, but 

telomerase activity can be induced by expression of exogenous hTERT (Weinrich et al., 

1997). For some types of cells, expression of exogenous hTERT is sufficient for 

immortalization (Jiang et al., 1999; Morales et al., 1999; Vaziri et al., 1999). 

Immortalization of cells transformed with DNA tumor virus oncogenes is also 

associated with activation of a telomere maintenance mechanism, usually telomerase 

(Counter et al., 1992). Transformation by such oncogenes depends on inactivation of the p53 

and Rb tumor suppressor proteins (reviewed in (Bryan and Reddel, 1994)). Immortalization 

also requires additional, as yet unidentified, changes within the host cell genome. These 

additional changes occur in a minority of cells expressing the viral oncogenes (ranging from 

1 in 105 to 1 in 109 cells) but, in every case, these changes result in the activation of a 

telomere maintenance mechanism (Colgin and Reddel, 1999).  

Expression of viral oncogenes and treatment with DNA damaging agents has been 

shown to cause genotypic and phenotypic changes (reviewed in (Bryan and Reddel, 1994)). 

Analysis of cells immortalized by exogenous telomerase suggests that they are much closer to 

normal (Jiang et al., 1999; Morales et al., 1999; Vaziri et al., 1999; Yang et al., 1999). 

However, it has previously been shown that HMECs grown under standard culture conditions 

require loss of p16INK4a expression in addition to expression of hTERT for immortalization, 

and this was associated with various abnormalities (Kiyono et al., 1998). We therefore 
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addressed the question of whether hTERT-induced immortalization of HMECs results in cell 

lines that are less abnormal than SV40-TAg immortalized cells. To do this we immortalized 

the same HMEC cell strain with either the SV40 oncogenes or expression of exogenous 

hTERT. This is the first direct comparison of these immortalization techniques, and showed 

that hTERT expression resulted in fewer karyotypic and phenotypic alterations than did 

expression of the SV40 oncogenes. The hTERT-transduced cells exhibited normal DNA 

damage responses, including expression of p53 and p21CIP1/WAF1, and retained many 

differentiated features of normal HMECs, but we confirmed that immortalization by hTERT 

under these culture conditions was dependent on prior loss of p16INK4a expression. 

Furthermore, these cells were not karyotypically normal, although they were less abnormal 

than the SV40-immortalized lines. The latter had lost DNA damage response and displayed 

aberrant differentiation, and some of these lines were tumorigenic in athymic nude mice. 

 

Results 

Cell Transfection and Lifespan Extension 
 
Pre- and post-selection HMECs (Bre-80 cells) were transfected with the expression plasmid, 

pCI-hTERT, encoding the telomerase catalytic subunit, or the pCI-Neo control plasmid; drug 

selection for the neomycin resistance marker was not used, however. hTERT transfection led 

to immortalization of post-selection HMECs without any noticeable period of growth arrest 

(Figure 1). In all cases hTERT expressing cells grew out of a background of senescent cells 

(Figure 1 Inset). Transfection with pCI-hTERT did not affect the lifespan of pre-selection 

HMECs (data not shown). Four independent hTERT-immortalized mass cultures obtained 

from three experiments were designated B80-TERT1, B80-TERT2, B80-TERT3a, and B80-

TERT3b. B80-TERT3a and B80-TERT3b were derived from the same initial population of 

Bre-80 post-selection cells. The pCI-Neo transfected post-selection control HMECs acquired 
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a senescent phenotype 3-11 PD after transfection (Figure 1). 

 In contrast, when post-selection Bre-80 cells were transfected with an expression 

plasmid containing the SV40 early region, pRSV-T, T Antigen (TAg)-expressing cells were 

progressively diluted out of the cultures as previously reported (Huschtscha et al., 2001). 

Briefly, expression of TAg was observed to lead to a changed cellular morphology, growth 

arrest and apoptosis. Similarly, post-selection HMECs expressing exogenous p16INK4a or 

endogenous p16INK4a induced by the demethylating agent 5-azacytidine, also arrested with 

TAg expression. As discussed elsewhere (Huschtscha et al., 2001), this result suggests that 

there are genetic or epigenetic changes that occur in post-selection HMECs in addition to loss 

of p16INK4a expression that inhibit lifespan extension induced by TAg. Consequently, 

immortalization of post-selection HMECs by TAg was a very rare event, occurring only once 

in ten separate experiments (Huschtscha et al., 2001). TAg expression, however, did 

transform pre-selection cells at a high frequency. Seven of nine such cultures became 

immortalized, one without crisis, and six of them after a period of culture crisis lasting 65 to 

215 days (Table 1). These cells were compared with the hTERT-immortalized HMECs. 

 The growth rate of the hTERT HMECs was quite slow directly after transfection. This 

was primarily due to inhibitory effects of the transfection reagents. Like the control cells, the 

majority of cells within the hTERT-transfected populations became senescent within 3 to 11 

PD of transfection, before the stably transfected, hTERT-expressing minority subpopulation 

overgrew the cultures. Differences in growth rates (or other characteristics) among the 

hTERT lines could possibly be explained by different plasmid integration sites. The growth 

rates of all of the hTERT- and most of the TAg-immortalized lines increased with increasing 

PDs (Table 1); this is suggestive of clonal evolution within each line. B80-T6 immortalized 

cells retained an essentially constant growth rate. Although the growth rate of half of the 

post-crisis immortal cell lines was observed to be increased when compared to pre-crisis 
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cells, B80-T5, B80-T9 and B80-T18 showed slower initial post-crisis growth rates: thus 

escape from crisis and immortalization is not necessarily associated with increased growth 

rate. 

Within 1-2 PDs after escape from crisis, B80-T5, B80-T6, B80-T8, B80-T9 and B80-

T18 TAg-immortalized cultures ceased dividing in the standard serum-free MCDB 170 

medium and required a change in medium composition to allow continued growth. Various 

alternative media were tested to identify one that was able to permit continued growth. B80-

T5 grew best in RPMI 1640 plus 10% fetal bovine serum (FBS), while the other cell lines 

grew in a mixture of MCDB 170 and RPMI 1640 medium plus 10% FBS. Interestingly, B80-

TERT1 cells also showed a change in medium requirements at approximately PD 93.  

 

Telomerase Activity and Telomere Length 

Analysis of telomerase activity by the TRAP assay (Figure 2a) showed that the untransfected 

pre- and post-selection HMECs contained very low, but detectable levels of telomerase 

activity. The hTERT-transfected cells and the post-crisis TAg-transfected cells all had levels 

of telomerase activity that were substantially higher than their untransfected counterparts. 

RT-PCR analysis, using primers designed to detect transcripts from the pCI-hTERT plasmid, 

showed that the hTERT-transfected cultures were all expressing exogenous hTERT (data not 

shown).  

TRF analysis (Figure 2b) indicated that most of the SV40-TAg- and hTERT-

immortalized cultures had TRF lengths similar to those of telomerase-positive cancer cell 

lines (e.g., HeLa, Figure 2b, c). The telomere lengths of the immortal cell lines were 

generally shorter than those of the untransfected HMECs. Additional TRF analyses (Figure 

2c, and data not shown) showed that the telomere lengths of all of the cell lines were 

stabilized, with some fluctuation around an apparent set-point telomere length that differed 
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for each cell line, as has been described previously (Sprung et al., 1999). In contrast to the 

other cell lines, B80-TERT3b had a major TRF band with a mean length of approximately 12 

kilobases (kb), but also had a TRF smear up to and beyond the 49 kb marker on the pulsed-

field gel. Telomeres of this length have previously been seen in ALT cells, which are 

characterized by the absence of telomerase activity, heterogeneous telomere lengths ranging 

from very short to extremely long, and the presence of ALT-associated PML bodies (APBs) 

(Yeager et al., 1999). APBs have been found only in ALT cell lines and tumors and are PML 

nuclear domains containing large aggregations of telomeric DNA and associated proteins 

(Yeager et al., 1999). The B80-TERT3b cells were therefore indirectly immunostained with 

antibodies against PML and the TRF1 and TRF2 telomere-specific proteins, to test for APBs, 

but none were detected. We considered the possibility that the B80-TERT3b cell line may 

contain a mixture of telomerase-positive and ALT (telomerase-negative) sub-populations that 

account for it being both telomerase-positive and also having a small subset of telomeres that 

are long and heterogeneous. To test this, B80-TERT3b was subcloned by limiting dilution, 

and seven individual subclones were cultured separately. Telomerase activity was detected in 

each of these subclones by TRAP assay (data not shown). Thus, no ALT B80-TERT3b 

subclones were found, although each subclone had a telomere length phenotype that was 

similar to the parental cells (Figure 2c). 

 

Expression of Tumor Suppressor Proteins  

HMEC cultures transfected with pCI-hTERT or pRSV-T were analyzed for expression of 

tumor suppressor gene products that are commonly affected in immortalized cells. Western 

blotting (Figure 3) was used to detect expression of p110Rb, p16INK4a, p53 and p21CIP1/WAF1 in 

the four hTERT cultures and four SV40-TAg cultures. All cell lines expressed p110Rb (Figure 

3a). As expected, increased levels of hyper-phosphorylated p110Rb were observed in those 
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cells lines devoid of p16INK4a expression. p16INK4a was detected in the SV40-TAg cultures, 

but not in the hTERT cells (Figure 3b), consistent with their origin from HMECs that were 

transfected pre-selection and post-selection, respectively. Western analysis showed an 

increase in p53 levels in untransfected post-selection HMECs compared to their pre-selection 

counterparts (Figure 3c), as has previously been observed (Romanov et al., 2001). p53 levels 

in B80-TERT2 and B80-TERT3a were similar to those in untransfected post-selection cells, 

however the levels in B80-TERT1 and B80-TERT3b were reduced. p53 levels were 

increased in all of the SV40-TAg cell lines, consistent with previous observations of HMECs 

(Garbe et al., 1999). p21WAF1/CIP1 protein levels in B80-TERT2 were similar to those 

observed in untransfected post-selection HMEC cells (Figure 3d), although there was a 

decrease in p21WAF1/CIP1 expression observed in the other three hTERT cell lines (Figure 3d). 

All of the SV40-TAg cells showed lower levels of p21WAF1/CIP1 expression (Figure 3d). 

 

DNA Damage Response 

To assess response to DNA damage, each cell line was exposed to the DNA intercalating 

agent, actinomycin D. Western analysis showed that after exposure to 7.5 nM actinomycin D 

for 24 h, p53 levels increased in untransfected post-selection and hTERT-immortalized 

HMECs (Figure 4a). Following exposure to actinomycin D, p21WAF1/CIP1 expression levels 

also increased in each of the hTERT cell lines (Figure 4b). p53 expression did not discernibly 

change in either of the SV40-TAg cell lines tested, although there was a slight increase in 

p21WAF1/CIP1 expression. Flow cytometry of propidium iodide-stained cells was performed to 

assess whether the actinomycin D treatment led to G1 cell cycle arrest. Cell cycle analysis 

showed that the treated hTERT cells accumulated in the G1 phase of the cell cycle with a 

concomitant decrease in the percentage of S phase cells (Figure 4c). There was no significant 

change in the cell cycle parameters of SV40-TAg cells treated with actinomycin D.  
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Differentiation status  

HMEC hTERT and SV40-TAg cells were assessed by morphology and immunocytochemical 

analysis of keratin proteins and polymorphic epithelial mucins in comparison to untransfected 

HMECs (Figure 5a, b). At low cell density (Figure 5c) the hTERT immortalized HMECs 

resemble untransfected pre- and post-selection HMECs, although they tend to aggregate and 

grow as discrete colonies. At confluence, however, the hTERT HMECs generally have a 

smaller cytoplasmic volume, and become tightly packed. B80-TERT1 cells (Figure 5d) often 

contain small vacuoles in the cytoplasm that are not observed in the other cell lines. B80-

TERT2 (Figure 5e) and B80-TERT3a (Figure 5f) maintain a phenotype that most closely 

resembles post-selection HMECs. B80-TERT3b cells (Figure 5g) resemble the other hTERT 

cell lines at low cell density, but at confluence the cells often form radial configurations 

which may have a central dome (Figure 5h). All of the hTERT HMEC lines are generally 

more uniform in shape at confluence than untransfected normal pre- and post-selection Bre-

80 cells. Cellular morphologies of the SV40-TAg HMEC lines are much more varied (Figure 

5i - l). B80-T8 cultures (Figure 5j) contain many floating cells and cellular debris in the 

medium while maintaining a high mitotic index, whereas B80-T17 cells (Figure 5k) maintain 

a morphology more similar to that observed in post-selection and hTERT-immortalized 

HMECs. The hTERT and SV40-TAg immortalized cells are able to grow to a high level of 

confluence without any diminution in their growth rate in subsequent passages. Confluence 

of untransfected HMECs, however, leads to slower growth in subsequent passages. 

The untransfected post-selection, hTERT- and SV40-TAg-immortalized cells showed 

similar levels of expression for seven of the ten keratins assessed (keratins 1, 5, 6, 7, 10, 16 

and 18; data not shown). Keratins 14 and 19 showed minimal changes in expression in the 
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immortal cell lines, however keratin 8 expression was upregulated in the SV40-TAg cells 

(Table 2). Polymorphic epithelial mucin markers were also observed to be upregulated in the 

SV40-TAg cells (Table 2), although they were expressed at normal levels in the hTERT cells. 

The upregulation of keratin 8 and the polymorphic epithelial mucin markers, generally highly 

expressed in luminal epithelial cells, indicate that SV40-TAg induced immortalization may 

induce trans-differentiation of HMECs to a somewhat more luminal phenotype. 

 

Karyotypic Analysis 

hTERT and SV40-TAg HMECs were analyzed by QFQ and GTG banding (Tables 3 and 4). 

Cytogenetic analysis revealed a large number of chromosomal aberrations in the SV40-TAg 

cells, with a moderate number in the hTERT cells (Table 3). SV40-TAg cells were observed 

to contain an abnormal number of chromosomes, leading to either a hypodiploid karyotype 

(B80-T8 and -T17) or an aneuploid karyotype (>60 chromosomes; B80-T5 and -T18). 

Observed chromosomal abnormalities include minutes and double minutes, acentric 

fragments, ring and dicentric chromosomes, and multiple marker chromosomes. GTG 

banding analysis of the hTERT HMEC lines showed an approximately diploid complement 

of chromosomes in the majority of metaphases analyzed (Table 3) with no consistent changes 

that could be associated with hTERT immortalization per se. However, changes leading to 

amplification and rearrangement at chromosome 20q13 and chromosome 7q21 were observed 

in each hTERT cell line, and amplification of chromosome 16p12 was observed in B80-

TERT2 and B80-TERT3b (Table 4). Spectral karyotypic analysis (not shown) of B80-TERT2 

and B80-TERT3a identified the chromosome 7 and 20 markers (Table 4) in these cells as 

der(7) t(4;7) (7)(7qter>p21/22::p15-p21:: 4p/q?) and t(1/7/15/20) respectively. The 

chromosome 6, 7, and 20 changes are likely to have occurred prior to hTERT transfection as 

they are common to more than one hTERT immortalized culture. These chromosomal 
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changes were not observed in the SV40-TAg HMEC lines examined.  

 

Tumorigenicity 

The tumorigenicity of some of the HMEC hTERT and SV40-TAg cell lines was assessed by 

subcutaneous injection of 5x106 cells into ten BALB/c nude mice per cell line (Table 5). 

After an average of 125 and 107 days respectively, mice injected with B80-T8 and B80-T18 

cell lines formed subcutaneous tumors of approximately 10mm diameter. At necropsy there 

was no evidence of metastasis. Tumors were resected and the cells were cultured in vitro. 

Fluorescence in situ hybridization of the tumor cells using biotinylated human and mouse 

specific COT-1 DNAs confirmed that the tumors contained human cells. Injection of the 

hTERT-immortalized cell lines into mice did not lead to tumor formation after nine months. 

 

Discussion 

This study provides the first direct comparison of immortalization of the same cells by 

expression of exogenous hTERT or SV40-TAg. Both procedures resulted in an increased 

level of telomerase activity, indicating that the pre-existing low levels of activity in HMECs 

(Figure 2a) are insufficient for telomere maintenance. Possible explanations for the inability 

of TAg to transform post-selection HMECs are discussed elsewhere (Huschtscha et al., 

2001). Immortalization of HMECs following expression of the TAg genes mostly involved a 

period of crisis, and was associated with karyotypic abnormalities, loss of some cell cycle 

checkpoint functions, and phenotypic alterations, including tumorigenicity in some cases. In 

contrast, the hTERT-immortalized cells were much more similar to the normal post-selection 

HMECs. Nevertheless, under the culture conditions used in this study, hTERT-immortalized 

HMECs were clearly abnormal.  

In agreement with the observations by Kiyono and colleagues (1998), we found that 
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hTERT was only able to immortalize post-selection HMECs; it had previously been shown 

that such cells lack p16INK4a expression (Brenner et al., 1998; Foster et al., 1998; Huschtscha 

et al., 1998). Similarly, immortalization of keratinocytes by hTERT occurred only in cells 

that had spontaneously downregulated expression of p16INK4a (Dickson et al., 2000), or in 

conjunction with expression of the human papilloma virus E7 gene which inactivates p110Rb 

(Farwell et al., 2000; Kiyono et al., 1998). hTERT expression was also shown to immortalize 

primary pre-selection HMECs and human foreskin keratinocytes grown on fibroblast feeder 

layers without loss of p16INK4a expression (Ramirez et al., 2001). The growth conditions 

included serum, which favors the growth of the luminal HMECs, whereas the growth 

conditions used in our study and other previous studies of hTERT-transduced HMECs select 

for basal HMECs, so that it is not clear to what extent the results can be compared. Further 

studies are required to determine whether other changes have occurred in the immortal cells 

grown on feeder layers. Nevertheless, the results clearly highlight the importance of cell 

culture conditions. 

The p16INK4a-related senescence-like growth arrest exhibited by normal HMECs 

grown without serum or feeder layers, and by other types of cells, is an important subject of 

study. Ex vivo growth and manipulation of cells for transplantation and other purposes will be 

facilitated by an understanding of how this arrest is triggered and whether it can be avoided. 

Also, the frequency with which p110Rb or p16INK4a function is inactivated in tumors, 

including breast carcinomas, raises the possibility that adverse growth conditions encountered 

during tumorigenesis may also activate a p16INK4a-mediated growth arrest that must be 

overcome by inactivation of this tumor suppressor mechanism. 

We recently described indirect evidence that post-selection HMECs have other 

changes in gene expression (Huschtscha et al., 2001), and it is also possible that there are 

genetic alterations other than disruption of the Rb/p16INK4a pathway that cooperate with 
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hTERT for immortalization. The earliest immortalization studies utilizing hTERT showed 

that its expression is sufficient for the immortalization of fibroblasts and retinal pigment 

epithelial cells (Bodnar et al., 1998; Jiang et al., 1999; Morales et al., 1999), and more 

recently it has also been shown to immortalize endothelial (Yang et al., 1999) and 

mesothelial (Dickson et al., 2000) cells. MRC-5 human fetal lung fibroblast cells infected 

with an hTERT retroviral construct, however, had an extended proliferative capacity but were 

not necessarily immortalized (MacKenzie et al., 2000). Also, for CD8+ T lymphocytes 

hTERT transduction was found in one study to have no effect on the replicative lifespan 

(Migliaccio et al., 2000), and in another study was found to result in immortalization of later 

passage cells (Hooijberg et al., 2000). These data suggest that for some cell types and culture 

conditions altered gene expression was required to cooperate with hTERT expression for 

immortalization.  

 Karyotypic analysis of the SV40-TAg HMECs showed frequent aneuploidy and 

chromosomal abnormalities as expected (Sack, 1981). In comparison the hTERT HMECs 

remained approximately diploid in chromosome number, yet various marker chromosomes 

and other karyotypic aberrations were observed in metaphase spreads of each cell population. 

The presence of common changes in the hTERT cell lines suggested that at least some of the 

karyotypic changes occurred prior to transfection; in support of this, extensive karyotypic 

changes have previously been documented in post-selection HMECs (Romanov et al., 2001). 

Cytogenetic alterations were also identified in hTERT immortalized human foreskin 

keratinocytes and adenoid epithelial cells (Farwell et al., 2000). These observations contrast 

with those on hTERT immortalized human foreskin fibroblasts which were reported to 

exhibit minimal karyotypic changes, although further analysis did identify some aneuploid 

and tetraploid cells at around 200 PDs (Jiang et al., 1999). 

One of the hTERT lines (B80-TERT3b) had longer telomeres than the others, with a 
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minority of the telomeres being very long, although there was no obvious difference in levels 

of telomerase activity or of the negative telomere length regulators, TRF1 and TRF2 (van 

Steensel and de Lange, 1997). There is no evidence yet that this is deleterious to the cells, but 

dysregulation of telomere lengthening may need to be considered as a potential aberration 

associated with forced expression of exogenous hTERT from a heterologous promoter. 

 Immortal HMECs expressing TAg, but not those expressing hTERT, lacked normal 

G1 checkpoint control. The TAg-immortalized cells upregulated p21CIP1/WAF1 in reponse to 

actinomycin D exposure, possibly via p53-independent mechanisms or due to incomplete 

inactivation of p53 by TAg, but it was insufficient to activate the G1 checkpoint. 

 Although the accelerated growth rate observed during the continuous culture 

of hTERT-immortalized HMECs, and the altered growth factor requirements of the B80-

TERT1 line, may indicate accumulation of genetic or epigenetic changes, overall these cells 

show greater consistency in morphology, expression of keratin and polymorphic epithelial 

mucin markers, and growth dynamics than the SV40-TAg cells. In the SV40-TAg HMEC 

lines, although there was no distinguishable change in keratin 19 expression levels, the 

upregulation of the luminal cell markers keratin 8 and the polymorphic epithelial mucins 

HMGF-1 and -2, suggests a trend to a more luminal phenotype in these cells (Taylor-

Papadimitriou et al., 1989), as does the requirement for FBS in five of the TAg lines. The 

pre-selection HMECs contained a mixture of basal (inhibited by FBS) and luminal 

(stimulated by FBS) cell types (Kao et al., 1995). These changes therefore suggest either that 

there was selective immortalization of luminal-like cells (Sun et al., 1999), or a TAg-induced 

change in differentiation status. 

The tumorigenicity of two of the SV40-TAg cell lines highlights the genetic changes 

that may occur in these cells. Previous analysis of SV40-TAg immortalization of HMECs has 

shown tumorigenicity in some, but not all studies (Elenbaas et al., 2001; Lebeau et al., 1995; 
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Yilmaz et al., 1993). In one study, a combination of hTERT, SV40-TAg and oncogenic ras 

was required to induce tumorigenicity in HMECs (Elenbaas et al., 2001). It is likely that the 

transformed phenotype results, at least in part, from the genetic instability caused by the loss 

of functional p53 and of G1 cell cycle checkpoint control (Almasan et al., 1995) and the 

shortening of telomeres to a critical length at crisis (Counter et al., 1992), which may result in 

telomere-telomere fusion and fusion-breakage-fusion cycles.  

This study provides the first direct comparison of cells immortalized by hTERT or by 

SV40-TAg. It demonstrates that hTERT-induced immortalization of HMECs is associated 

with fewer phenotypic and karyotypic changes than SV40 TAg-induced immortalization, 

providing a useful source of relatively normal cells for in vitro studies. These cells, together 

with the SV40-immortalized cells that underwent additional changes, in some cases including 

full malignant transformation, form a valuable set of related lines for studying the genetic 

requirements for tumorigenicity. 

 

 
Materials and Methods 

Cell Transfection and Culture 

HMECs were grown from explanted mammary tissue obtained from reduction mammoplasty 

as described previously (Huschtscha et al., 1998). Normal HMECs cultured from one 

individual were designated Bre-80, and pre-selection and post-selection cells were transfected 

with the plasmids pCI-hTERT (containing hTERT cDNA sequence from position 51-3456 

bp, AF018167 (Colgin et al., 2000)), pCI-Neo (empty vector control), pRSV-T (containing 

the SV40 early region genes, encoding the large and small TAg proteins (Sakamoto et al., 

1993)) or pRSV2 (empty vector control). pCI-hTERT transfections were performed utilizing 

FuGENE 6 transfection reagent (Roche, Basel, Switzerland), and pRSV-T transfections were 

performed utilizing either lipofectamine or DMRIE-C transfection reagents (Life 
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Technologies, Rockville, MD) respectively. Bre-80 HMECs transfected with pCI-hTERT 

were grown as mass cultures. Bre-80 HMECs transfected with pRSV-T were grown either as 

mass cultures (B80-T8, B80-T9, B80-T11) or selected as focal isolates of four individual 

colonies that grew out after transfection (B80-T5, B80-T6, B80-T17, and B80-T18) 

(Huschtscha et al., 2001). Cells were cultured in a 5% CO2 incubator using standard tissue 

culture procedures. All cultures were initially grown in MCDB 170 medium (Life 

Technologies). B80-TERT1, B80-T6, B80-T8, B80-T9 and B80-T18 were changed to a 

medium containing a 1:1 ratio of MCDB 170 and RPMI 1640 (Life Technologies) plus 10% 

FBS (Trace Biosciences, Castle Hill, NSW, Australia), and B80-T5 was changed to RPMI 

1640 plus 10% FBS. MDA-MB-468 breast adenocarcinoma cells (American Type Culture 

Collection (ATCC; Manassas, VA)), HeLa epithelioid cervical carcinoma cells (ATCC), 

SaOS-2 osteosarcoma cells (ATCC), GM847 SV40-TAg immortalized Lesch-Nyhan 

Syndrome skin fibroblast cells (from O. Pereira-Smith, Baylor College of Medicine, TX), 

WMM1175 melanoma cells (from G. Mann, Millennium Institute, Westmead Hospital, 

Sydney, NSW, Australia), HFF5 human foreskin fibroblasts (provided by Ralph Böhmer, 

Ludwig Institute of Cancer Research, Melbourne, Victoria, Australia), and T24 bladder 

carcinoma cells (ATCC) were grown in 4.5g/l glucose Dulbecco’s modified medium (DME-

M; Life Technologies, Rockville, MD) plus 10% FBS. All media contained 50µg/ml 

gentamicin (Sigma, St. Louis, MO).   

 

Cell cycle analysis 

Single cell suspensions were stained for DNA analysis using a previously described method 

(Smyth et al., 1993). Briefly, 1.0x106 cells were added to 0.5 to 0.15ml 5% Triton X-100 

(BDH (EM Sciences), Merck KGaA, Darmstadt, Germany), 0.5 mg ribonuclease A (Sigma), 

25µg propidium iodide (Sigma) and phosphate buffered saline to a final volume of 0.5ml. 
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Cells were incubated for 1 h on ice before examining on a FACScan (Becton Dickinson, 

Franklin Lakes, NJ). 

 

Cytogenetic Analysis 

For chromosome studies exponentially growing cultures were treated as previously reported 

(Peterson et al., 1979). The karyotypes were described according to standard nomenclature 

(Mitelman, 1995). Fluorescence in situ hybridization (FISH) with biotinylated COT-1 DNA 

(Gibco BRL, Rockville, MD) was used to identify mouse tumors as derived from human cells 

using standard techniques. 

 

DNA Damage Response 

Cell lines were exposed to 7.5 nM actinomycin D (Sigma) for 24 h. After exposure cells were 

counted and either analyzed for p53/p21WAF1/CIP1 upregulation by Western blotting, or for cell 

cycle parameters by DNA flow cytometry. 

  

Immunocytochemistry 

Indirect immunostaining for TRF1, TRF2, and PML proteins was performed as described 

previously (Yeager et al., 1999). Primary antibodies were 1:200 hTRF1 rabbit polyclonal, 

1.66µg/ml hTRF2 mouse monoclonal (Upstate Biotechnology, Lake Placid, NY) and 2µg/ml 

PML mouse monoclonal (PG-M3; Santa Cruz Biotechnology). The secondary antibody used 

was either 1:200 goat anti-rabbit FITC labeled polyclonal IgG (Sigma, St. Louis, MO) or 

1:128 goat anti-mouse FITC labeled polyclonal IgG (Sigma).  

The keratin and polymorphic epithelial mucin differentiation marker profile of transfected 

cells was analyzed as described previously (Huschtscha et al., 1998). Fluorescence intensity 

was assessed as either low, medium, or high, for individual slides in three separate 
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experiments. The consensus result for each cell type was then compared to that for post-

selection Bre-80 cells. Primary monoclonal antibodies were against pan-keratin, keratin 19, 

HMFG-1, HMFG-2 and SM3 (gifts from Dr. Joyce Taylor-Papadimitriou, Imperial Cancer 

Research Fund Laboratories, London, UK), keratins 1, 6, 10 and 16 (gifts from Dr. Patricia 

Purkis, Imperial Cancer Research Fund Laboratories), and keratins 5, 7, 8, 14, and 18, and 

vimentin (Sigma). Secondary antibodies used were 1:128 FITC-conjugated goat anti-mouse 

IgG (Sigma) and 1:200 FITC-conjugated goat anti-rabbit IgG (Sigma) and 5ug/ml Texas 

Red-conjugated horse anti-mouse IgG (Vector, Burlingame, CA). Cell nuclei were 

counterstained with 0.2µg/ml DAPI (4’,6-diamidino-2-phenylindol; Sigma). 

 

Limiting Dilution Subcloning 

Cells were trypsinized and then diluted and seeded at a concentration of approximately 1 cell 

per well into 96-well plates (IWAKI, Asahi Techno Glass Corporation, Tokyo, Japan), in 

MCDB 170 medium (Life Technologies) that had been conditioned by HMECs and then 

filtered through 0.2µm filters (Sartorius, Göttingen, Germany). Colonies were expanded 

separately and analyzed as separate subclones of the original parental cell line. 

  

Telomerase Activity and Telomere Length Assays 

Telomerase activity was assayed using the Telomere Repeat Amplification Protocol (TRAP) 

(Kim et al., 1994) with modifications previously described (Perrem et al., 1999). The PCR 

products were detected using SYBR Green I (Molecular Probes, Eugene, OR) staining and a 

STORM 860 utilizing ImageQuant software (Molecular Dynamics, Sunnyvale, CA). 

Telomere length was determined as previously described (Bryan et al., 1995) by pulsed-field 

gel electrophoresis (CHEF-DR II pulsed-field gel electrophoresis apparatus, Biorad, 

Hercules, CA) of terminal restriction fragments (TRF) generated by digesting extracted 
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genomic DNA with Hinf1 and Rsa1 restriction enzymes (Boehringer Mannheim). 

 

Tumorigenicity Studies  

For each cell line tested, ten 9-10 week old Balb/c nu/nu mice (Animal Resources Centre, 

Murdoch, WA, Australia) were injected subcutaneously in the interscapular region with 

5x106 cells. When the diameter of a tumor was >10 mm, the mouse was culled and 

necropsied, and the tumor was resected for analysis. 

 

Western Analysis 

Harvested cell pellets were lysed by addition of 0.5ml lysis buffer (10ml ECB buffer solution 

(50mM Tris-HCl at pH 8.0; 120nM NaCl; 100mM NaF; 0.2mM Na2VO4; 0.5% NP-40) 

containing leupeptin (10mg/ml; Boehringer Mannheim Corp., Indianapolis, IN) and 1 tablet 

of complete protease inhibitor cocktail (Boehringer Mannheim)) per 107 cells, followed by 

four freeze/thaw cycles. Protein concentration was quantitated with the BCA reagent (Pierce, 

Rockford, IL) and cellular protein (50µg) was separated on 7.5% (p110Rb), 13% (p53) or 15% 

(p16INK4a, p21CIP1/WAF1) SDS-PAGE gels, then transferred to Immobilon-P® PVDF transfer 

membrane (Millipore) or Trans-Blot® transfer medium PVDF membrane (Bio-Rad, Hercules, 

CA). Primary mouse monoclonal antibodies used to detect proteins were 0.5µg/ml WAF 

(p21CIP1/WAF1; Oncogene Research Products, CN Biosciences Inc., San Diego, CA) 0.5μg/ml 

p53, 0.5µg/ml p16INK4a and 0.5µg/ml p110Rb (Neomarkers, Lab Vision Corp., Fremont, CA) 

and 0.5µg/ml actin (Sigma). The secondary antibody used was horseradish peroxidase 

conjugated goat anti-mouse IgG (DAKO Corp., Santa Barbara, CA). Supersignal® 

chemiluminescence substrate for Western blots (Pierce, Rockford, IL) was used to detect the 

secondary antibody. 
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Table 1  Growth of hTERT and SV40-TAg transfected HMECs 
Cell line Crisis period 

(days)a 
Growth Rate (PD/day) 

Pre-crisisb Immortalized  
 Earlyc  Lated  

B80-TERT1 - n/a 0.18 0.24 
B80-TERT2 - n/a 0.19 0.33 
B80-TERT3a - n/a 0.25 0.38 
B80-TERT3b - n/a 0.27 0.37 
B80-T17 - n/a 0.53 n/ae 

B80-T5 168 0.44 0.13 0.50 
B80-T6f 77 0.29 0.35 0.37 
B80-T8 215 0.21 0.29 n/ae 

B80-T9f 65 0.37 0.26 0.55 
B80-T11 212 0.27 0.55 n/ae 

B80-T18 170 0.40 0.36 0.64 
Growth characteristics of Bre-80 HMECs transfected with pCI-hTERT or pRSV-T. Four 
cultures (B80-TERT…) immortalized by expression of hTERT were compared with seven 
cultures (designated B80-T…) that became immortalized following transfection with the 
SV40 early region plasmid, pRSV-T. aLength of culture crisis prior to immortalization. 
Population doublings (PD)/day were calculated for each cell line for the following intervals. 
bPre-crisis: growth rate was calculated for the 50 days prior to entering crisis. cEarly: growth 
rate between days 100 and 200 for the hTERT cells and B80-T17, or the first 50 post-crisis 
days for the Tag cells. dLate: growth rate between days 300 and 400 for hTERT cells, and for 
the second 50 days of post-crisis culture for the TAg cells. eImmortal B80-T8 and B80-T11 
HMECs were cultured for <100 days and B80-T17 was cultured for <400 days. fThe data for 
B80-T6 and B80-T9 represent a minor correction to the data in Fig. 3a of (Huschtscha et al., 
2001). n/a = not applicable. 
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Table 2  Changes in differentiation marker expression in hTERT and SV40-TAg 
immortalized HMECs as compared to untransfected post-selection HMECs 
Cell Line 
 

PDa Luminal/Basal Keratin 
Differentiation Markers 

Polymorphic Epithelial Mucin 
Markers 

  Luminal 
Keratin 8 

Basal 
Keratin 

14 

Luminal 
Keratin 

19 

Luminal 
SM3 

Luminal 
HMFG-1 

Luminal 
HMFG-2 

B80-TERT1 
 

81 +b nc nc nc + nc 

B80-TERT2 
 

93 nc + nc nc nc nc 

B80-TERT3a 59 + nc nc nc nc nc 

B80-TERT3b 62 - + nc nc nc nc 

B80-T5 85 ++ - - + + + 

B80-T8  56 + + nc + +++ + 

B80-T17 112 ++ nc nc nc ++ ++ 

B80-T18 76 ++ - - nc + nc 

  
aPD, population doubling level of the analyzed cells. b+/-, small up/down regulation of 
expression; ++, moderate up regulation of expression; +++, large upregulation of expression; 
nc, no change in expression levels.  
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Table 3  Karyotypic analysis of hTERT and SV40-TAg HMEC lines 
Cell Type Modal 

Chromosome 
Number (range)a 

4N 
metaphases 

(%)b 

 

Aberrant 
Chromosomes / 

Karyotypes 
Examinedc 

B80-TERT1 46 (45 – 50) 0 37 /11 
B80-TERT2 46 (45 – 49) 1 29 /11 
B80-TERT3a 46 (46 – 47) 2 20 /10 
B80-TERT3b 46 (46 – 47) 4 31 /10 
B80-T5 63 (60 – 69) 4 165 /11 
B80-T8 43 (40 – 45) 6 269 /11 
B80-T17 43 (41 – 45) 10 73 /11 
B80-T18 67 (65 – 71) 5 168 /10 
aModal chromosome number and range calculated from 30 metaphases. bThe percentage of 
4N karyotypes observed in 100 metaphases examined. cGTG banded metaphase spreads were 
examined for aberrant chromosomes. All Bre-80 metaphases contain a strain-specific strong 
GTG and QFQ band on chromosome 14p in addition to those counted. PD level at time of 
karyotypic analyses was approximately 80 for the hTERT cell lines, and approximately 70 for 
the SV40-TAg cell lines. 
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Table 4  Marker and aberrant chromosomes detected in the hTERT HMEC lines 
Marker 

Name 

Cell Linea 

B80-TERT1 B80-TERT2 B80-TERT3a B80-TERT3b 

M1 dup(7)(q21-qter) [1]
b
 dup(7)(q21-qter) [11] 

dup (7)qter p21/ 22:: 
?q21-qter) [10]  

M1a    der (7) t (7;?) (p21;?) [10] 

M2 14p+ 14p+ 14p+ 14p+ 

M3  add (20)(q13) ++ [6] add (20) (p13/q13) +++ [10]  

M3A  add (20)(q13) +++[5]   

M3B add (20)(q13) 20q+[11]    

M3C    20q+ [10] 

M4  der (18) del/t (18;?)(q12;?) [3]   

M4A der (18) 18q++ [11]    

M5  add (16)(p12) [1]  add (16) (p12?) [3] 

M6  del (2)(p13) [1]   

M7  der (22?) t (1;22) (q21;q11) [2]   

M7A    dup (1) (q21-qter) [3] 

M8 add (13) (p10) [10]    

M9 t (5q;10q) [2]    

M9A    10q+ [4] 

M9B    del (10) (q10) 

M10 del (6) (q21) [1]    

M11 t (4p;8q?) [1]    
aGTG banding marker chromosome analysis was performed in eleven B80-TERT1 and B80-
TERT2 metaphases, and ten B80-TERT3a and B80-TERT3b metaphases. bNumber of 
karyotypes in which this marker was found. 
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Table 5  Tumorigenicity of hTERT and SV40-TAg HMEC lines 
Cell Line PD  No. of 

Mice 
Forming a 

Tumora 

Tumor 
Latency 
(Days)b 

Time to 
form 1cm2 

Tumor 
(Days)c 

B80-TERT1  108 - - - 
B80-TERT2 124 - - - 
B80-TERT3a 75 - - - 
B80-TERT3b 83 - - - 
B80-T5 127 - - - 
B80-T8 81 3 21, 21, 21 77, 95, 182 
B80-T17 134 - - - 
B80-T18 124 2 68, 68 98, 115 
MDA-MB-468d 344e 2 9, 9 74, 161  
a5x106 cells were injected subcutaneously into ten 9-10 week old Balb/c nu/nu mice.  
bNumber of days until a tumor was first observed. cNumber of days until the tumor 
reached approximately 10mm in diameter. dMDA-MB-468 human breast epithelial 
tumor cells are a positive control for tumor formation. ePassage number (not population 
doubling). 
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Figure 1 Growth of hTERT-transfected HMECs. Post-selection cells were 

transfected at day 0. Cumulative PDs were calculated at each passage. The pCI-

Neo transfected control cells corresponding to the B80-TERT1, 2, 3a and 3b 

cultures grew for 5, 11, 3, and 3 PD, respectively, before ceasing cell division and 

acquiring a senescent morphology. Inset: Phase contrast photomicrograph of B80-

TERT3a culture at PD 2 showing outgrowth of dividing cells on a background of 

senescent cells. Arrows indicate some of the senescent cells. 
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Figure 2 Telomerase activity and telomere maintenance in Bre-80 HMECs. (a) 
TRAP analysis of telomerase activity in hTERT and SV40-TAg HMECs. LB, TRAP 
lysis buffer; -ve, water instead of cell protein lysate; pre, pre-selection; post, post-
selection. (b) Pulsed field terminal restriction fragment (TRF) analysis of telomere 
length in pre- and post-selection, hTERT, and SV40-TAg HMECs. (c) Pulsed field 
TRF analysis of telomere length with increasing PDs in B80-TERT2, 3a and 3b cells, 
and in 3b subclones; the subclones were obtained by limiting dilution at PD 107 and 
grown for 18-28 PD before TRF analysis. HeLa, GM847, and HFF5 cells are 
examples of telomerase-positive, ALT-positive and normal cells, respectively.  
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Figure 3 Western analysis of tumor suppressor protein expression in HMECs. (a) 
p110Rb;(b) p16INK4a; (c) p53; and (d) p21CIP1/WAF1. PD levels at the time of analysis were: 
B80-TERT1, PD 136; -TERT2, 155; -TERT3a, 133; -TERT3b, 136; -T5, 131; -T8, 63; -T17, 
128; and -T18, 151. Pre, pre-selection; post, post-selection. HFF5, T24, GM847 and 
WMM1175 cells act as positive controls for p110Rb expression. T24 and WMM1175 cells 
act as positive controls for increased expression of hyper-phosphorylated p110Rb, associated 
with loss of expression of p16INK4a. HFF5 and WM1175, positive and negative controls, 
respectively, for expression of p16INK4a, p53 and p21CIP1/WAF1. Actin expression is used as a 
loading control for each western blot.  
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Figure 4 Response of HMECs to DNA damage. Cells were treated with 7.5 nM actinomycin 

D for 24 h. Western analysis was performed for (a) p53; and (b) p21CIP1/WAF1. SaOS-2 cells, 

negative control for p53 expression. Post HMEC, post-selection Bre-80 cells; C, untreated control; 

T, treated. PD levels at the time of analysis: B80-TERT1, 136; B80-TERT2, 155; B80-TERT3a, 

133; B80-TERT3b, 136; B80-T5, 131; and B80-T17, 128. Actin expression is shown as control for 

protein loading. (c) Cell cycle analysis. Propidium iodide-stained cells were analyzed by FACS. 

Percentage of cells in each phase of the cell cycle is shown; mean ± SEM, n=3 separate 

experiments.  
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Figure 5 Morphologic changes observed in hTERT- and TAg-transfected HMECs 
(phase contrast microscopy using 20X objective, or 4X objective for (h)). (a) Pre-
selection HMECs; (b) Post-selection HMECs; (c) B80-TERT2 at 50% confluence, PD 40; 
(d) B80-TERT1, PD 106; (e) B80-TERT2, PD 141; (f) B80-TERT3a, PD 89; (g) B80-
TERT3b, PD 90; (h) B80-TERT3b cells at confluence, PD 40, showing dome-like 
structures; (i) B80-T5, PD 123; (j) B80-T8, PD 79; (k) B80-T17, PD 143; (l) B80-T18, 
PD 145.  
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