59 research outputs found

    A modified empirical criterion for strength of transversely anisotropic rocks with metamorphic origin

    Get PDF
    A modified empirical criterion is proposed to determine the strength of transversely anisotropic rocks. In this regard, mechanical properties of intact anisotropic slate obtained from three different districts of Iran were taken into consideration. Afterward, triaxial rock strength criterion introduced by Rafiai was modified for transversely anisotropic rocks. The criterion was modified by adding a new parameter α for taking the influence of strength anisotropy into consideration. The results obtained have shown that the parameter α can be considered as the strength reduction parameter due to rock anisotropy. The modified criterion was compared to the modified Hoek–Brown (Saroglou and Tsiambaos) and Ramamurthy criteria for different anisotropic rocks. It was concluded that the criterion proposed in this paper is a more accurate and precise criterion in predicting the strength of anisotropic rocks

    A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Get PDF
    This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity assessments of notch-type defects", for the Spanish Ministry of Science and Innovation (Ref.: MAT2010-15721)

    Prevalence and burden of HBV co-infection among people living with HIV:A global systematic review and meta-analysis

    Get PDF
    Globally, in 2017 35 million people were living with HIV (PLHIV) and 257 million had chronic HBV infection (HBsAg positive). The extent of HIV-HBsAg co-infection is unknown. We undertook a systematic review to estimate the global burden of HBsAg co-infection in PLHIV. We searched MEDLINE, Embase and other databases for published studies (2002-2018) measuring prevalence of HBsAg among PLHIV. The review was registered with PROSPERO (#CRD42019123388). Populations were categorized by HIV-exposure category. The global burden of co-infection was estimated by applying regional co-infection prevalence estimates to UNAIDS estimates of PLHIV. We conducted a meta-analysis to estimate the odds of HBsAg among PLHIV compared to HIV-negative individuals. We identified 506 estimates (475 studies) of HIV-HBsAg co-infection prevalence from 80/195 (41.0%) countries. Globally, the prevalence of HIV-HBsAg co-infection is 7.6% (IQR 5.6%-12.1%) in PLHIV, or 2.7 million HIV-HBsAg co-infections (IQR 2.0-4.2). The greatest burden (69% of cases; 1.9 million) is in sub-Saharan Africa. Globally, there was little difference in prevalence of HIV-HBsAg co-infection by population group (approximately 6%-7%), but it was slightly higher among people who inject drugs (11.8% IQR 6.0%-16.9%). Odds of HBsAg infection were 1.4 times higher among PLHIV compared to HIV-negative individuals. There is therefore, a high global burden of HIV-HBsAg co-infection, especially in sub-Saharan Africa. Key prevention strategies include infant HBV vaccination, including a timely birth-dose. Findings also highlight the importance of targeting PLHIV, especially high-risk groups for testing, catch-up HBV vaccination and other preventative interventions. The global scale-up of antiretroviral therapy (ART) for PLHIV using a tenofovir-based ART regimen provides an opportunity to simultaneously treat those with HBV co-infection, and in pregnant women to also reduce mother-to-child transmission of HBV alongside HIV

    Scientific, sustainability and regulatory challenges of cultured meat

    Get PDF
    Producing meat without the drawbacks of conventional animal agriculture would greatly contribute to future food and nutrition security. This Review Article covers biological, technological, regulatory and consumer acceptance challenges in this developing field of biotechnology. Cellular agriculture is an emerging branch of biotechnology that aims to address issues associated with the environmental impact, animal welfare and sustainability challenges of conventional animal farming for meat production. Cultured meat can be produced by applying current cell culture practices and biomanufacturing methods and utilizing mammalian cell lines and cell and gene therapy products to generate tissue or nutritional proteins for human consumption. However, significant improvements and modifications are needed for the process to be cost efficient and robust enough to be brought to production at scale for food supply. Here, we review the scientific and social challenges in transforming cultured meat into a viable commercial option, covering aspects from cell selection and medium optimization to biomaterials, tissue engineering, regulation and consumer acceptance

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore