100 research outputs found

    Characterizing microplastic hazards: which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms?

    Get PDF
    There is definitive evidence that microplastics, defined as plastic particles less than 5 mm in size, are ubiquitous in the environment and can cause harm to aquatic organisms. These findings have prompted legislators and environmental regulators to seek out strategies for managing risk. However, microplastics are also an incredibly diverse contaminant suite, comprising a complex mixture of physical and chemical characteristics (e.g., sizes, morphologies, polymer types, chemical additives, sorbed chemicals, and impurities), making it challenging to identify which particle characteristics might influence the associated hazards to aquatic life. In addition, there is a lack of consensus on how microplastic concentrations should be reported. This not only makes it difficult to compare concentrations across studies, but it also begs the question as to which concentration metric may be most informative for hazard characterization. Thus, an international panel of experts was convened to identify 1) which concentration metrics (e.g., mass or count per unit of volume or mass) are most informative for the development of health-based thresholds and risk assessment and 2) which microplastic characteristics best inform toxicological concerns. Based on existing knowledge, it is recommended that microplastic concentrations in toxicity tests are calculated from both mass and count at minimum, though ideally researchers should report additional metrics, such as volume and surface area, which may be more informative for specific toxicity mechanisms. Regarding particle characteristics, there is sufficient evidence to conclude that particle size is a critical determinant of toxicological outcomes, particularly for the mechanisms of food dilution and tissue translocation

    Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review

    Get PDF
    Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions

    Analysis of Microplastics in Food Samples

    Get PDF
    This chapter presents a compilation of the analytical techniques used to detect and analyze microplastics in food. A detailed description of microplastics found in different samples is provided as well as an estimate of the annual intake of these particles. A total of 22–37 milligrams of microplastics per year was found. The factors that can influence the presence of particles in food, especially table salt, are discussed, showing that a background presence of microplastics in the environment can explain a large amount of experimental data.Support for this work was provided by the CTQ2016-76608-R project from the Ministry of Economy, Industry and Competitiveness (Spain) and by the University of Alicante under the project UAUSTI18-06

    Sources, Distribution, and Fate of Microscopic Plastics in Marine Environments

    Get PDF
    Microplastics are pieces of plastic debris <5 mm in diameter. They enter the environment from a variety of sources including the direct input of small pieces such as exfoliating beads used in cosmetics and as a consequence of the fragmentation of larger items of debris. A range of common polymers, including polyethylene, polypropylene, polystyrene, and polyvinyl chloride, are present in the environment as microplastic particles. Microplastics are widely distributed in marine and freshwater habitats. They have been reported on shorelines from the poles to the equator; they are present at the sea surface and have accumulated in ocean systems far from land. Microplastics are also present in substantial quantities on the seabed. A wide range of organisms including birds, fish, and invertebrates are known to ingest microplastics and for some species it is clear that a substantial proportion of the population have microplastic in their digestive tract. The extent to which this might have harmful effects is not clear; however, the widespread encounter rate indicates that substantial quantities of microplastic may be distributed within living organisms themselves as well as in the habitats in which they live. Our understanding about the long-term fate of microplastics is relatively limited. Some habitats such as the deep sea may be an ultimate sink for the accumulation of plastic debris at sea; indeed, some recent evidence indicates quantities in the deep sea can be greater than at the sea surface. It has also been suggested that microplastics might be susceptible to biodegradation by microorganisms; however, this is yet to be established and the prevailing view is that even if emissions of debris to the environment are substantially reduced, the abundance of microplastics will increase over the next few decades. However, it is also clear that the benefits which plastics bring to society can be realized without the need for emissions of end-of-life plastics to the ocean. To some extent the accumulation of microplastic debris in the environment is a symptom of an outdated business model. There are solutions at hand and many synergistic benefits can be achieved in terms of both waste reduction and sustainable use of resources by moving toward a circular economy
    • …
    corecore