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Abstract 

Microplastics are pieces of plastic debris <5mm in diameter. They enter the environment 

from a variety of sources including the direct input of small pieces such as exfoliating beads 

used in cosmetics and as a consequence of the fragmentation of larger items of debris. A 

range of common polymers, including polyethylene, polypropylene, polystyrene and 

polyvinyl chloride, are present in the environment as microplastic particles. Microplastics are 

widely distributed in marine and freshwater habitats. They have been reported on shorelines 

from the poles to the equator; they are present at the sea surface and have accumulated in 

ocean systems far from land. Microplastics are also present in substantial quantities on the 

seabed. A wide range of organisms including birds, fish, and invertebrates are known to 

ingest microplastics and for some species it is clear that a substantial proportion of the 

population have microplastic in their digestive tract. The extent to which this might have 

harmful effects is not clear; however the widespread encounter rate indicates that substantial 

quantities of microplastic may be distributed within living organisms themselves as well as in 

the habitats in which they live. Our understanding about the long-term fate of microplastics is 

relatively limited. Some habitats such as the deep sea may be an ultimate sink for the 

accumulation of plastic debris at sea; indeed some recent evidence indicates quantities in the 

deep sea can be greater than at the sea surface. It has also been suggested that microplastics 

might be susceptible to biodegradation by microorganisms however, this is yet to be 

established and the prevailing view is that, even if emissions of debris to the environment are 

substantially reduced, the abundance of microplastics will increase over the next few decades. 

However, it is also clear that the benefits which plastics bring to society can be realized 

without the need for emissions of end of life plastics to the ocean. To some extent the 

accumulation of microplastic debris in the environment is a symptom of an outdated business 

model. There are solutions at hand and many synergistic benefits can be achieved in terms of 

both waste reduction and sustainable use of resources by moving toward a circular economy. 
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1. Definitions 

 

The term microplastic is used to describe small pieces of plastic debris. There is no 

universally recognized definition. Small fragments of debris were first reported at the sea 

surface in the early 1970s [e.g. 1, 2] and Ryan and Moloney described the abundance of 

fragments on shorelines in the 1980s using the term microplastic [3]. In 2004, evidence of 

widespread occurrence of truly microscopic pieces of plastics was presented  by Thompson et 

al who also used the term ‘Microplastics’ to describe these pieces, but no formal definition 

was presented [4]. Research interest in the topic of microplastics increased dramatically 
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thereafter (Fig. 1). In 2008, NOAA hosted the first international workshop on the Occurrence, 

Effects and Fate of Microplastics [5] and a working group of the assembled participants made 

a somewhat pragmatic decision to define microplastic as small pieces less than 5mm in 

diameter. One reason for this was that they considered particles of this size might behave 

differently in the environment and present different types of hazards to those that were 

already widely recognized for larger items, where entanglement is a major concern [6, 7]. 

While 5mm is widely accepted as an upper bound for the definition of microplastics, the 

lower bound is much less clearly defined.  

 

Particles as small as 20µm have been reported in the environment and it seems likely that 

even smaller particles of plastic debris in the nano particle size range are also present in the 

environment. However, at present the limit of detection, which relies on particle identification 

by spectroscopy, is around 20µm [8]. The ability to capture very small particles such as these 

is also directly affected by the type of sampling equipment used. For example, collection 

from the water column will often utilize plankton nets which are typically made of 333µm 

mesh. Whereas, microplastics are often extracted from sediments via a density gradient and 

flotation subsequently collecting the buoyant particles over filter paper which can be capable 

of capturing much smaller particles. Hence, at present there is no universally accepted size 

range or methodology for the collection of microplastics. A recent report by GESAMP, an 

advisory body to the United Nations, adopted the working definition of microplastics from 

1nm to <5mm [9]. However our knowledge about environmental quantities of particles at the 

lower end of this size range is completely lacking. Within the EU, there is currently  work to 

promote greater harmonization for future monitoring [8] however, at present, it is difficult to 

make formal comparisons between data collected by different research teams since 

methodologies vary. This is important because it fundamentally limits our ability to describe 

distributions and also to accurately assess abundance which is of fundamental importance not 

just in order to monitor changes in the levels of contamination but also to indicate the likely 

frequency of encounter by biota which is necessary to inform risk assessment. 

 

 

2. Sources  
 

A wide variety of polymers are used to make a diverse array of plastic products, many of 

which bring considerable societal benefit. All of the most common polymers have been 

identified as microplastic particles. These include, in order of frequency of studies reporting: 

Polyethylene (PE), Polypropylene (PP), Polystyrene (PS), Polyamide (Nylon) (PA), Polyester 

(PES), Acrylic (AC), Polyoximethylene (POM), Polyvinyl alcohol (PVA), Polyvinyl chloride 

(PVC), Poly methyl acrylate (PMA), Polyethylene terephthalate (PET), Alkyd (AKD), and 

Polyurethane (PU) [10].  However, knowledge of the type of polymer found as a microplastic 

particle in the environment does little to help confirm the source of the particle since a single 

polymer can be used in a very diverse array of applications. Microplastics have been reported 

in the environment in a wide variety of colors, shapes and sizes [10, 11]. Collectively this 

information on polymer type, shape, and color may, to a very limited extent, help to indicate 

possible sources according to original usage; for example, fibers from rope/netting, versus 

fibers from clothing/ carpets. However, this information is of little use in identifying the 

geographic sources of origin. Microplastics can be described in two very broad categories 

which reflect their potential sources and usage; these are ‘primary’ and secondary 

microplastics. 

 

Primary microplastics are particles which enter the environment as litter of microplastic 
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(<5mm) size. That is to say the release of pieces that are manufactured for use as microplastic 

sized particles. Sources of primary microplastics include spillage of pre-production pellets (~ 

4mm in diameter, sometimes called ‘mermaids tears’ or ‘nurdles’) or powders (>1mm in 

diameter such as those used in roto-molding) which are being transported prior to being 

converted into plastic products. In addition, release of plastic particles which are used as shot 

blasting media, particularly in the cleaning of softer metals such as aluminum [12]. Primary 

microplastics also include the release of exfoliant microbeads used extensively in the 

cosmetics industry. For example, microbeads typically around 250µm in diameter are used in 

a wide range of skin cleansers, shower gels, and toothpaste. When used, there is nothing the 

consumer can do to prevent the release of these microplastic particles into waste water and it 

is considered likely that a substantial proportion will then pass through waste treatment into 

the environment [13]. Quantities can be considerable with millions of individual plastic 

particles in a single 150mL container of cosmetic [14]. 

 

By contrast, secondary microplastics are microplastic sized particles that have arisen as a 

consequence of the fragmentation, in the environment, of larger items of debris, such as 

packaging, rope, sanitary related products. With secondary microplastics, it is logical to 

assume that quantiles should broadly reflect the quantities of larger, identifiable, items of 

debris collected in routine monitoring. Such studies typically report single-use disposable 

items of packaging, sewage related debris, together with rope and netting as being some of 

the most common types of litter on shorelines. A further and potentially substantial input of 

microplastic to the environment is the release of fibers from textiles, for example as a 

consequence of machine washing.  Fibers have been reported in residues from sewage 

treatment on land [15] and at elevated quantities around former sewage sludge dumping 

grounds in the marine environment [16]. While these fibers can in effect enter the 

environment as pieces that are already microplastic in size, since they were not manufactured 

as microplastics they are generally considered as a secondary input. 

 

 

 

3. Distribution 

 

The distribution of microplastics can be considered from several perspectives. The most 

obvious is perhaps the geographic distribution and this can be evaluated at a range of spatial 

scales from less than a few meters, for example within a beach [e.g. 17], to scales of several 

kilometers between beaches in a region for example, to global scale patterns between 

countries or continents [16, 18]. Distribution can also be categorized between environmental 

compartments for example, the quantity of microplastic at the sea surface, in the water 

column, on the sea bed (both subtidal and intertidal e.g. [4]) and quantities in biota, for 

example that have accumulated via ingestion [19, 20].  

 

Since there are no universally recognized protocols for collection, sampling methods vary 

considerably among researchers, and this will have a strong influence on both the ability to 

detect microplastics as well as the types, sizes, and abundance of microplastics recorded [10]. 

The potential for bias is likely to increase the smaller the size of microplastic being sampled. 

Pieces >1mm in diameter can typically be identified as plastic with a high degree of 

confidence by unaided visual examination. However, smaller particles will require 

visualization via microscopy and to be certain will also need formal identification using 

either Fourier transform infrared (FT-IR) or Raman spectroscopy [10]. These spectroscopic 

approaches require expensive capital equipment and are time consuming, hence are not 
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universally applied. Yet in my experience of the sub millimeter particles that appear ‘unusual’ 

and look sufficiently like they might be plastic for them to be subjected to formal 

spectroscopic identification actually only about one third are confirmed as plastic. Despite 

these difficulties several studies do present information on geographic patterns of 

distribution. Thompson et al [4] use standard approaches and FT-IR spectroscopy to illustrate 

the presence of microplastics at sites around the United Kingdom and, working near 

Plymouth, UK, also show greater abundance in subtidal sediments compared to intertidal 

sediments (Fig. 2 ). Using the same approach this team went on to sample intertidal 

sediments on a global scale, reporting the presence of microplastic on each of more than 20 

shorelines sampled. Spatial variation among sampling sites was relatively low indicating the 

ubiquity of microplastics in the intertidal [16]. A much more extensive study spanning more 

than 20 years of routine data collection by volunteers shows the relative abundance of debris 

captured by plankton nets in the Atlantic Ocean. Here, there was no routine formal particle 

identification analysis, but the pieces recorded were typically 1mm. A key finding from this 

study was substantial evidence of spatial patterns. Interestingly, the debris was most abundant 

in locations far from land indicating the importance of transport, of example away from 

human population centers. Indeed, the relative abundance showed a good level of 

predictability based on patterns of ocean circulation which appeared to be causing debris to 

accumulate in oceanic gyres (Fig. 3). Recent work in the Mediterranean has also shown 

elevated abundance near to population centers implicating them as potential sources and the 

shoreline study by Browne et al. also indicated a weak  correlation between abundance and 

the human population at a regional scale [16]. In summary, these studies have demonstrated 

the wide spread distribution of microplastic on shorelines and at the sea surface, with 

evidence of elevated abundance near to population centers and also in locations where ocean 

circulation causes floating items to become trapped in surface gyres [21] or possibly where 

particles sink to the seabed [11]. There is a considerable challenge in scaling up from 

individual studies, especially considering the lack of consistency in sampling, in order to 

produce global estimates of marine debris and even more challenging global estimates of 

plastic distribution [22]. However, numerical models based on floating macroplastic debris 

have been developed [23-25] and no-doubt models to estimate the distribution of microplastic 

will be evolved. Such models can be invaluable in helping to formulate predictions and to 

help frame hypotheses about the sources and ultimate sinks for marine debris and hence, also 

inform our understanding of encounter rate with marine organisms. 

 

In addition to the studies above some of which were designed to make spatial comparisons of 

microplastic using standardized protocols, there have been numerous pioneering studies 

demonstrating the accumulation of microplastics in specific locations and environmental 

compartments. In terms of habitats, microplastic has to, my knowledge, been reported in 

every location so far examined. In addition, to the sea surface and intertidal, substantial 

quantities of microplastics have been reported in marine sediments. This includes substantial 

quantities in shallow water sediments. For example, quantities in excess of 2000 items per 

kilogram dry weight have been reported from sediments in the Venice Lagoon [26]. Recent 

work suggests quantities per unit volume in the deep sea sediment may be greater than per 

unit volume of water collected at the sea surface (although sampling these habitats 

unavoidably  requires different methodology) possibly implicating the deep sea as an ultimate 

sink for microplastic accumulation [11]. Elevated quantities have also been reported in sea 

ice collected in the Arctic. Here, it appears that the process of ice formation may provide a 

mechanism leading to the concentration of particulate plastic from the nearby water column 

[27].  It should be noted that while this chapter focuses on the marine environment, there is 

growing evidence of widespread accumulation in freshwater lakes and rivers [28]. 
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Microplastics have also been widely reported in biota. A recent review indicated around 10% 

of all papers describing encounters between debris and species described encounters with 

microplastics [7]. For example, microplastics have been reported in commercially important 

species of fish [19, 20] and shellfish [29]. Although quantities per individual are low, 

typically one or two items per individual, data indicate that a substantial proportion of the 

individuals in some populations are contaminated with microplastics. For instance Murray et 

al showed that over 80% of the individuals for a population of Dublin Bay prawns contained 

microplastics [29]. The most extensive data on ingestion of plastic debris comes from the 

work of Jan van Franeker who has been sampling populations of the Northern Fulmar in 

European waters for over 30 years. At the outset, his surveys did not explicitly categorize 

microplastics, however many of the items in these birds were within the microplastic size 

range. He has shown that in some parts of Europe more than 90% of individuals contain 

plastic debris. Indeed, the quantities in some birds are substantial, and despite some of the 

debris being regurgitated or defecated it appears that seabirds are retaining plastic debris. Jan 

van Franeker has estimated that in the North Sea region Fulmars probably process by 

ingestion around 6 tonnes of plastic annually translating to about 0.6 tonnes contained within 

the living population at any given time (pers. com. van Franeker).  Once a bird dies and its 

body tissues decay then any plastic it did contain will be released back to the environment 

[30]. 

 

 

4. Fate 

 

Plastics have only been mass produced for around 60 years, however, it is clear that in this 

time, plastic debris has contaminated habitats and biota on a global scale. This is equally true 

of microplastics which have accumulated on shorelines from the poles to the equator at the 

sea surface and in the deep sea; they have also accumulated in wildlife. There are few data on 

temporal trends in the abundance of plastic debris and the data that do exist tend to show 

considerable temporal variability rather than a trend of increasing abundance as might be 

expected based on plastic production statistics. Microplastic is a potential exception to this 

with some data illustrating an increase in abundance over time. Data collected by the 

continuous plankton recorder in Scottish waters showed significant increases in microplastic 

abundance when comparing between the 1960s and 1970s with the 1980s and 1990s. Hence it 

has been suggested that one of the reasons an increasing trend in the abundance of 

macroplastic is not evident from monitoring data is that larger items of plastic are 

progressively fragmenting into smaller items that have not been routinely captured in 

monitoring studies. It is also clear that microplastics are accumulating in inaccessible and 

relatively under-sampled locations such as the deep sea [11] and within arctic sea ice [27] and 

biota [7]. Microplastics have also accumulated in beach sediments more than a metre beneath 

the sediment surface [31]. More generally during microplastic sampling, all protocols require 

a visual discrimination step. This means that microplastics that resemble natural particulates; 

for example white or translucent relatively spherical particles will be hard to distinguish from 

sand when compared to brightly coloured fibrous shaped pieces. Hence there are a variety of 

factors that all result in environmental monitoring under sampling microplastics.   

 

Plastics are very durable and are resistant to degradation. Ultraviolet light weakens plastic 

and coupled with mechanical action, for example from wave energy, this can cause large 

items to fragment into microplastics. Hence, it is possible that the ultimate fate of all of the 

plastic in the environment is as microplastic sized pieces. In term of quantities, microplastics 

are substantially more abundant than macro plastics in some locations. However, by mass 
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macroplastics are still by far the dominant size faction in the environment [17]. Therefore 

even if we were able to  prevent additional  inputs of plastic debris to the sea with immediate 

effect the quantity of microplastics would still continue to increase over time as a 

consequence of the fragmentation of legacy items already present in the environment (Fig. 

4) . It is also clear that there is no effective means of removing microplastic once it is in the 

ocean. Hence, in addition to further research to quantify the abundance of microplastics and 

consider their potential effects on biota and the environment, it is essential to focus on 

developing measures to reduce the inputs of debris. This is a pressing priority because even if 

we were able to initiate this action today it could take decades before this was translated into 

a substantial reduction in the rate of accumulation of microplastics.   

 

From the perspective of the longer term fate of microplastics in the ocean, polymer chemists 

consider that all of the conventional plastic (i.e. non-biodegradable) that has ever been 

produced is still present on the planet in a form that is too large to be biodegraded [32]. The 

exception to this is plastic that has been incinerated. Like all solid items in aquatic habitat 

plastic debris including microplastics readily becomes colonised by microorganism and 

microbial assemblages have been shown to vary according to plastic type [33, 34]. Some 

consider that biodegradation of conventional plastics is ultimately possible however there is 

little clear evidence of this. If biodegradation is occurring, it would appear that rates are 

incredibly slow, to the extent at least, that we should not rely on biodegradation to have any 

meaningful effect on the quantities of debris in our oceans when considered in relation to the 

substantial inputs of plastic marine debris [35].  

 

5. A personal perspective on the solutions to this global environmental problem 

 

Is the long term fate then that our planet will become contaminated with exponentially 

increasing quantities of microplastics? From a personal perspective it seems the warning 

signs are apparent and recent papers outline some of the concerns relating to microplastics in 

the environment including the potential for physical damage [36] as well as toxicological 

harm [37]. Is it inevitable that quantities of plastic and microplastic will increase? Yes it is 

inevitable, unless steps are taken to reduce inputs of debris to the ocean. 

 

Thinking more broadly about inputs of plastic to the environment, there are several important 

additional considerations [38]: 1) From the perspective of sustainable use of resources, it has 

been estimated that we use around 8% of world oil production to make plastic items, yet 

around a third of these items are discarded within a short time frame. Plastics are inherently 

recyclable, so by recycling end-of-life plastic it is possible to reduce the accumulation of 

debris while at the same time reducing our demand for fossil carbon [39]. 2) Plastic items are 

important to society; however there is something fundamentally different between the 

problem of plastic marine debris and several other current environmental problems. Unlike 

turning on an electric light or taking an aeroplane journey, the emission, in this case of debris 

to the oceans, is not directly linked to the benefit. So we can, in theory, obtain the benefits 

from plastic items without there being a need for emissions of end-of-life plastics to the 

oceans. 3) Together with other scientists, representatives from industry, policy makers, and 

NGOs, I frequently attend meetings focused on marine debris problems and solutions. While 

there may be discussion and sometimes disagreement about the relative importance of the 

various impacts; there is typically universal consensus to reduce inputs of debris to the ocean 

– in essence, I do not meet ‘marine debris deniers’. From a broad perspective, we already 

know that marine debris is damaging to the economy, to wildlife and the environment, it is 

wasteful and unnecessary and (as far as I am aware) we are agreed it needs to stop. That 
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being the case, then, what are the problems that retard progress?  

 

In my opinion, the problems that retard progress relate to prioritising solutions:  who should 

take the action and if there are costs, who should pay [for further discussion see 38]? The 

solutions are well known; they principally lie on land rather than at sea and in decreasing 

order of merit are: 1)  reduce material usage –  any reduction in the amount of new plastic 

produced will reduce the quantity of end-of life material that results and hence reduce the 

potential for formation of microplastics, 2) reuse items – this will directly reduce the need for 

new plastic items and so also reduce the quantity of end-of-life plastic material, 3) dispose of 

end-of-life items properly; ideally recycle them, 4) recycle, since turning end-of-life material 

back in to new items in a closed loop will reduce the accumulation of waste and 

simultaneously reduce demand for fossil carbon, 5) energy recovery via incineration – where 

items cannot easily be re-used or recycled, should be considered as a poor alternative to 1 -4. 

Finally, but because it is overarching potentially most important we need to redesign, so for 

every plastic product consider, at the design stage, the hierarchy of options above in order to 

maximise the overall environmental footprint i.e. reduce use of fossil carbon and reduce the 

accumulation of waste for example, by designing so that the eventual end-of-life products can 

readily be used as raw material for new production. Such principles are gaining momentum, 

for example within the EU, there is considerable interest in the philosophy of circular 

economy [40]. There is public interest and response from industry, for example some 

manufacturers have voluntarily opted to reduce the use of microbeads in their cosmetics [14]. 

Public interest and concern has also translated into policy actions for example to reduce the 

number of single-use plastic carrier bags. There are also industry led initiatives which unless 

used appropriately could work against these goals, for example use of bio-based carbon from 

agriculture is seen as a sustainable alternative to fossil carbon. However altering the carbon 

source does nothing to reduce marine debris, and where land is at a premium for food 

housing or natural habitats, a more efficient and arguably more sustainable solution is to 

supply the required carbon by recycling end-of-life plastic. Similarly designing plastic 

products so that they degrade / disintegrate more rapidly, can compromise the potential for 

product re-use, contaminate recycling, and lead to rapid accumulation of fragments in the 

environment [39].  What is needed is policy-led coordination of actions, supported by sound 

science, to utilise the measures above to achieve change as efficiently and rapidly as possible. 

This will likely involve voluntary actions, incentives, taxes, and education [41].  In particular 

there is a need to re-educate, thus far my life-time has been spent in a world with rapidly 

increasing production of disposable short term products and packaging, and of durable goods 

that cannot be repaired or renewed. In short, we are in a growing culture of throw-away 

living; there is an urgent need to recognise there is no such place as ‘away’. Marine litter and 

in this case microplastics are in effect symptoms of an outdated and inefficient business 

model; there are choices that need to be made now in order to   be more sustainable and to 

reduce the environmental impacts that otherwise will be left to challenge future generations. 

 

 

Figure Legends 

 

Fig. 1 Publications by year 1970 – July 2015, Using the search terms ‘plastic pellets’ and 

‘microplastics’. Compiled by Sarah Gall, Plymouth University. Reproduced from [9] with 

permission. 

 

Fig. 2 (A) Sampling locations in North-East Atlantic: Location of sites near Plymouth used to 

compare the abundance of microscopic plastic among habitats, □ (see Fig. 1D). Other shores 
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where similar fragments were also found, ●. Routes sampled by Continuous Plankton 

Recorder (CPR 1 and 2) since 1960 and used to assess changes in the abundance of 

microplastics, ---- . (B) One of numerous microscopic fragments found among sediment from 

beaches and identified as plastic using FT-IR spectroscopy, bar = 50µm. (C) FT-IR spectra of 

a microscopic fragment matched that of nylon. (D) There were significant differences in 

abundance of microplastics between sandy beaches and subtidal habitats (ANOVA on log10(x 

+ 1) transformed data, F 2,3 = 13.26, P < 0.05, * = P < 0.01), but abundance was consistent 

among sites within habitat type. (E) Accumulation of microscopic plastic in CPR samples 

revealed a significant increase in abundance when comparing the 1960’s and 1970’s to the 

1980’s and 1990’s (ANOVA on log10(x + 1) transformed data, F 3,3 = 14.42, P < 0.05, * = P < 

0.05). Approximate figures for global production of synthetic fibres overlain for comparison. 

Microplastics were also less abundant along the oceanic route CPR 2 than CPR 1 (F 1, 24  = 

5.18, P < 0.5). Reproduced from [4] with permission. 

 

 

Fig. 3 Average plastic concentration as a function of latitude for data shown in Fig. 1 of [21]   

(bars, units of pieces km-2), and concentration, C (color shading), of initially homogeneous 

(C=1) surface tracer after 10-year model integration (S2). Averages and standard errors were 

computed in one-degree latitude bins. The highest plastic concentrations were observed in 

subtropical latitudes (22-38°N) where model tracer concentration is also a maximum. 

Reproduced from [21] with permission. 

 

Fig. 4  Sources and accumulation of microplastics. a) Microplastics can be generated from 

the break-up of large (macroplastic) items in the environment. These items include plastic 

packaging such as carrier bags and bottles. Microplastics formed in this way are described as  

secondary microplastics ((a) top two photos). Microplastics also enter the environment as a 

consequence of direct inputs of microplastics sized particles. Such particles are described as 

primary microplastics ((a) bottom photo, a plastic microbead from a cosmetic product, 

Courtesy of Adil Bakir and Richard Thompson, and Plymouth University Electron 

Microscopy Unit). b) Once in the environment plastic items will progressively fragment into 

smaller and smaller pieces. Here, we see the relationship between the number of fragments 

formed by breakdown of the items shown in (a, red line = carrier bag, blue line = bottle and 

black line = microbeads from a cosmetic product) and the total surface area of plastic. c) This 

fragmentation will lead to formation of smaller particles and be associated with increased 

abundance increased potential for ingestion and increased surface area and hence increased 

potential for chemical transport. d) Microplastic fragments recovered from the Tamar Estuary, 

Plymouth Courtesy of Mark Browne, Plymouth University and e) Microplastic fragments 

recovered from surface waters in the North Atlantic (courtesy of Kara Lavender Law, SEA 

Foundation).   
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