16 research outputs found
Shape-based peak identification for ChIP-Seq
We present a new algorithm for the identification of bound regions from
ChIP-seq experiments. Our method for identifying statistically significant
peaks from read coverage is inspired by the notion of persistence in
topological data analysis and provides a non-parametric approach that is robust
to noise in experiments. Specifically, our method reduces the peak calling
problem to the study of tree-based statistics derived from the data. We
demonstrate the accuracy of our method on existing datasets, and we show that
it can discover previously missed regions and can more clearly discriminate
between multiple binding events. The software T-PIC (Tree shape Peak
Identification for ChIP-Seq) is available at
http://math.berkeley.edu/~vhower/tpic.htmlComment: 12 pages, 6 figure
Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries
The growth of sequencing-based Chromatin Immuno-Precipitation studies call for a more in-depth understanding of the nature of the technology and of the resultant data to reduce false positives and false negatives. Control libraries are typically constructed to complement such studies in order to mitigate the effect of systematic biases that might be present in the data. In this study, we explored multiple control libraries to obtain better understanding of what they truly represent.First, we analyzed the genome-wide profiles of various sequencing-based libraries at a low resolution of 1 Mbp, and compared them with each other as well as against aCGH data. We found that copy number plays a major influence in both ChIP-enriched as well as control libraries. Following that, we inspected the repeat regions to assess the extent of mapping bias. Next, significantly tag-rich 5 kbp regions were identified and they were associated with various genomic landmarks. For instance, we discovered that gene boundaries were surprisingly enriched with sequenced tags. Further, profiles between different cell types were noticeably distinct although the cell types were somewhat related and similar.We found that control libraries bear traces of systematic biases. The biases can be attributed to genomic copy number, inherent sequencing bias, plausible mapping ambiguity, and cell-type specific chromatin structure. Our results suggest careful analysis of control libraries can reveal promising biological insights
Genomic sequencing in clinical trials
Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to find its way into clinical trials both nationally and worldwide. We highlight the currently available types of genomic sequencing platforms, outline the advantages and disadvantages of each, and compare first- and next-generation techniques with respect to capabilities, quality, and cost. We describe the current geographical distributions and types of disease conditions in which these technologies are used, and how next-generation sequencing is strategically being incorporated into new and existing studies. Lastly, recent major breakthroughs and the ongoing challenges of using genomic sequencing in clinical research are discussed
A Feature-Based Approach to Modeling Protein–DNA Interactions
Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models (FMMs), a novel probabilistic method for modeling TF–DNA interactions, based on log-linear models. Our approach uses sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data. We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software are available at http://genie.weizmann.ac.il/
Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines
In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome
Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction
The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches
A user's guide to the Encyclopedia of DNA elements (ENCODE)
The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome