458 research outputs found

    On the Geometry of Planar Domain Walls

    Get PDF
    The Geometry of planar domain walls is studied. It is argued that the planar walls indeed have plane symmetry. In the Minkowski coordinates the walls are mapped into revolution paraboloids.Comment: 11 paghoj, Late

    Gravitational Collapse of Cylindrical Shells Made of Counter-Rotating Dust Particles

    Get PDF
    The general formulas of a non-rotating dynamic thin shell that connects two arbitrary cylindrical regions are given using Israel's method. As an application of them, the dynamics of a thin shell made of counter-rotating dust particles, which emits both gravitational waves and massless particles when it is expanding or collapsing, is studied. It is found that when the models represent a collapsing shell, in some cases the angular momentum of the dust particles is strong enough to halt the collapse, so that a spacetime singularity is prevented from forming, while in other cases it is not, and a line-like spacetime singularity is finally formed on the symmetry axis.Comment: To appear in Phys. Rev.

    Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons

    Get PDF
    The stability of cosmological event and Cauchy horizons of spacetimes associated with plane symmetric domain walls are studied. It is found that both horizons are not stable against perturbations of null fluids and massless scalar fields; they are turned into curvature singularities. These singularities are light-like and strong in the sense that both the tidal forces and distortions acting on test particles become unbounded when theses singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Static Cylindrical Matter Shells

    Full text link
    Static cylindrical shells composed of massive particles arising from matching of two different Levi-Civita space-times are studied for the shell satisfying either isotropic or anisotropic equation of state. We find that these solutions satisfy the energy conditions for certain ranges of the parameters.Comment: 9 pages, 3 figures, Latex; Final version, To appear in General Relativity and Gravitatio

    How the Charge Can Affect the Formation of Gravastars

    Full text link
    In recent work we physically interpreted a special gravastar solution characterized by a zero Schwarzschild mass. In fact, in that case, none gravastar was formed and the shell expanded, leaving behind a de Sitter or a Minkowski spacetime, or collapsed without forming an event horizon, originating what we called a massive non-gravitational object. This object has two components of non zero mass but the exterior spacetime is Minkowski or de Sitter. One of the component is a massive thin shell and the other one is de Sitter spacetime inside. The total mass of this object is zero Schwarzschild mass, which characterizes an exterior vacuum spacetime. Here, we extend this study to the case where we have a charged shell. Now, the exterior is a Reissner-Nordstr\"om spacetime and, depending on the parameter ω=1γ\omega=1-\gamma of the equation of state of the shell, and the charge, a gravastar structure can be formed. We have found that the presence of the charge contributes to the stability of the gravastar, if the charge is greater than a critical value. Otherwise, a massive non-gravitational object is formed for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for publication in JCA

    A note on Friedmann equation of FRW universe in deformed Horava-Lifshitz gravity from entropic force

    Full text link
    With entropic interpretation of gravity proposed by Verlinde, we obtain the Friedmann equation of the Friedmann-Robertson-Walker universe for the deformed Ho\v{r}ava-Lifshitz gravity. It is shown that, when the parameter of Ho\v{r}ava-Lifshitz gravity ω\omega\rightarrow \infty, the modified Friedmann equation will go back to the one in Einstein gravity. This results may imply that the entropic interpretation of gravity is effective for the deformed Ho\v{r}ava-Lifshitz gravity.Comment: 9 pages, no figure

    Baryon phase-space density in heavy-ion collisions

    Get PDF
    The baryon phase-space density at mid-rapidity from central heavy-ion collisions is estimated from proton spectra with interferometry and deuteron coalescence measurements. It is found that the mid-rapidity phase-space density of baryons is significantly lower at the SPS than the AGS, while those of total particles (pion + baryon) are comparable. Thermal and chemical equilibrium model calculations tend to over-estimate the phase-space densities at both energies.Comment: 5 pages, 2 tables, no figure. RevTeX style. Accepted for publication in Phys. Rev. C Rapid Communicatio

    Localization of electromagnetic waves in a two dimensional random medium

    Full text link
    Motivated by previous investigations on the radiative effects of the electric dipoles embedded in structured cavities, localization of electromagnetic waves in two dimensions is studied {\it ab initio} for a system consisting of many randomly distributed two dimensional dipoles. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for the total electromagnetic field. The results show that spatially localized electromagnetic waves are possible in such a simple but realistic disordered system. When localization occurs, a coherent behavior appears and is revealed as a unique property differentiating localization from either the residual absorption or the attenuation effects

    Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

    Full text link
    In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan, et al. (J. Opt. Soc. Am. B {\bf 10}, 391 (1993)). A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with travelling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases that the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems (Asatryan, et al., Phys. Rev. E {\bf 67}, 036605 (2003).)Comment: 8 pages 9 figure
    corecore