1,328 research outputs found
NEOShield kinetic impactor demonstration mission
This paper outlines a near-term mission concept developed under the NEOShield Project, for the demonstration of deflection capability of Potentially Hazardous Objects (PHOs). Potentially Hazardous Objects are a subclass of NEOs consisting mostly of asteroids (Potentially Hazardous Asteroids) that have the potential to make close approaches to the Earth whilst featuring a size large enough to cause significant regional damage in the event of an impact. It is currently (as of 2012) expected that only 20 - 30 percent of all existing PHOs are already known. This gives an indication that NEOs, in particular PHOs, are likely to pose a real threat to earth on a long time scale. Among the possible mitigation and deflection options, the mission outlined here seeks to demonstrate NEO deflection by means of a kinetic impactor. The main objectives of the mission are technology demonstration, deflection validation and beta-factor determination. This requires a mission that impacts a NEO in a representative velocity regime, allows measurement of the deflection sufficiently accurately to clearly demonstrate the momentum transfer by the impactor. The beta-factor quantifies the additional momentum transfer achieved through ejecta from the asteroid, which can be achieved both through accurate deflection measurement or ejecta observation, ideally through both. For the development of a fitting mission concept the NEOShield project performed a wide range of trade-offs while taking into consideration a variety of previously developed mission concepts such as Don Quijote
Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors.
'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management
Mass transfer in water-saturated concretes
ABSTRACTCements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behaviour of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository.Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated.The consequences of the results for the performance of cementitious barriers are discussed.</jats:p
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
Fluoroquinolones and the Risk for Methicillin-resistant Staphylococcus aureus in Hospitalized Patients1
To determine whether fluoroquinolone exposure is a risk factor for the isolation of Staphylococcus aureus and whether the effect is different for methicillin-resistant S. aureus (MRSA) versus methicillin-susceptible S. aureus (MSSA), we studied two case groups. The first case group included 222 patients with nosocomially acquired MRSA. The second case group included 163 patients with nosocomially acquired MSSA. A total of 343 patients admitted concurrently served as controls. Outcome measures were the adjusted odds ratio (OR) for isolation of MRSA and MSSA after fluoroquinolone exposure. Exposure to both levofloxacin (OR 5.4; p < 0.0001) and ciprofloxacin (OR 2.2; p < 0.003) was associated with isolation of MRSA but not MSSA. After adjustment for multiple variables, both drugs remained risk factors for MRSA (levofloxacin OR 3.4; p < 0.0001; ciprofloxacin OR 2.5; p = 0.005) but not MSSA. Exposure to levofloxacin or ciprofloxacin is a significant risk factor for the isolation of MRSA, but not MSSA
Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}
In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR)
are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals
with various carrier concentrations, from underdope to overdope. Our crystals
show the highest T_c (33 K) and the smallest residual resistivity ever reported
for Bi-2201 at optimum doping. It is found that the temperature dependence of
the Hall angle obeys a power law T^n with n systematically decreasing with
increasing doping, which questions the universality of the Fermi-liquid-like
T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of
the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab}
shows a good T-linear behavior. The systematics of the MR indicates an
increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure
Critical Dynamics of Singlet Excitations in a Frustrated Spin System
We construct and analyze a two-dimensional frustrated quantum spin model with
plaquette order, in which the low-energy dynamics is controlled by spin
singlets. At a critical value of frustration the singlet spectrum becomes
gapless, indicating a quantum transition to a phase with dimer order. This T=0
transition belongs to the 3D Ising universality class, while at finite
temperature a 2D Ising critical line separates the plaquette and dimerized
phases.
The magnetic susceptibility has an activated form throughout the phase
diagram, whereas the specific heat exhibits a rich structure and a power law
dependence on temperature at the quantum critical point.
We argue that the novel quantum critical behavior associated with singlet
criticality discussed in this work can be relevant to a wide class of quantum
spin systems, such as antiferromagnets on Kagome and pyrochlore lattices, where
the low-energy excitations are known to be spin singlets, as well as to the
CAVO lattice and several recently discovered strongly frustrated square-lattice
antiferromagnets.Comment: 5 pages, 5 figures, additional discussion and figure added, to appear
in Phys. Rev.
Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)
We present an extensive gallium NMR study of the geometrically frustrated
kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad
Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome
bi-layer susceptibility and separate the intrinsic properties due to the
geometric frustration from those related to the site dilution. Our major
findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a
maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%.
The maximum reveals the development of short range antiferromagnetic
correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out
of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in
the macroscopic susceptibility is associated to paramagnetic defects which stem
from the dilution of the kagome bi-layer. The low-T analysis of the NMR
lineshape suggests that the defect can be associated with a staggered
spin-response to the vacancies on the kagome bi-layer. This, altogether with
the maximum in the kagome bi-layer susceptibility, is very similar to what is
observed in most low-dimensional antiferromagnetic correlated systems; 4) The
spin glass-like freezing observed at T_g=2-4 K is not driven by the
dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor
modifications: Fig.11 and discussion in Sec.V on the NMR shif
- âŠ