699 research outputs found

    Hadron multiplicities in e+e- annihilation with heavy primary quarks

    Get PDF
    The multiple hadron production in the events induced by the heavy primary quarks in e+ee^+e^- annihilation is reconsidered with account of corrected experimental data. New value for the multiplicity in bbˉb\bar{b} events is presented on the basis of pQCD estimates.Comment: 16 pages, 6 figures. Version accepted for publication in EPJ

    On the azimuthal asymmetries in DIS

    Full text link
    Using the recent experimental data on the left right asymmetry in fragmentation of transversely polarized quarks and the theoretical calculation of the proton transversity distribution in the effective chiral quark soliton model we explain the azimuthal asymmetries in semi-inclusive hadron production on longitudinal (HERMES) and transversely (SMC) polarized targets with no free parameters. On this basis we state that the proton transversity distribution could be successfully measured in future DIS experiments with longitudinally polarized target.Comment: 8 pages, latex, 5 eps figures, uses epsfig and wrapfi

    Cherenkov Glue in Opaque Nuclear Medium

    Full text link
    The spectrum of Cherenkov gluons is calculated within the framework of in-medium QCD. It is compared with experimental data on the double-humped structure around the away-side jet obtained at RHIC. The values of the real and imaginary parts of the nuclear permittivity are obtained from these fits. It is shown that accounting for an additional smearing due to resonance-like production of final hadrons allows to achieve an agreement with experimental data

    Hadron multiplicity induced by top quark decays at the LHC

    Full text link
    The average charged hadron multiplicities induced by top quark decays are calculated in pQCD at LHC energies. Different modes of top production are considered. Proposed measurements can be used as an additional test of pQCD calculations independent on a fragmentation model.Comment: 12 pages, 12 figures, to be published elsewher

    Tunneling Calculation in the Field Ion Microscope

    Get PDF
    In this work we describe calculations of tunneling rate constants for the Field Ion Microscope (FIM) using one-dimensional model potential that simulates the ionization process in a FIM. We obtain expressions for the ionization rate constant (ionization probability per unit of time) of inert gas atoms as a function of their position above the surface. In order to calculate the probability of barrier penetration we have used the semiclassical (JWKB) approximation. We have also calculated ionization zone widths as the distance between points where ionization rate is a maximum and half of this value. An application to helium as the imaging gas is presented to highlight the power of the method

    Heavy-light mesons spectrum from the nonperturbative QCD in the einbein field formalism

    Get PDF
    The spectrum of B and D mesons (including the low lying orbitally and radially excited states) is calculated using the quark-antiquark Hamiltonian derived from QCD in the einbein field formalism. Spin-spin and spin-orbit terms due to the confinement and OGE interactions are taken into account as perturbations. Results for the masses and splittings are confronted to the experimental and recent lattice data and are demonstrated to be in a reasonable agreement with both. We find that the orbital excitations with l=2 and l=3 for D meson lie approximately in the same region as its first radial excitation that might solve the mystery of the extremely narrow D(2637) state recently claimed by DELPHI Collaboration.Comment: 9 pages, LaTeX2e, no figures, 3 tables, typos in formulae and one reference correcte

    Orbitally excited D and B mesons in the approach of the QCD string with quarks at the ends

    Get PDF
    In this letter we discuss the masses and the splittings of 1(2S+1)P_J states in the spectrum of D and B mesons, as they appear in the approach of the QCD string with quarks at the ends. We find good agreement of our predictions with those of other QCD-motivated models as well as with the lattice and experimental data, including recent experimental results. We discuss the ordering pattern for P levels in D- and B-mesonic spectrum.Comment: 7 pages, LaTeX2e, 2 EPS figures, added comments, to appear in Phys.Lett.

    The significance of cephalopod beaks as a research tool: An update

    Get PDF
    The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960’s, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.Cephalopod International Advisory Counci

    Enhanced Nonperturbative Effects in Z Decays to Hadrons

    Full text link
    We use soft collinear effective field theory (SCET) to study nonperturbative strong interaction effects in Z decays to hadronic final states that are enhanced in corners of phase space. These occur, for example, in the jet energy distribution for two jet events near E_J=M_Z/2, the thrust distribution near unity and the jet invariant mass distribution near zero. The extent to which such nonperturbative effects for different observables are related is discussed.Comment: 17 pages. Paper reorganized, and more discussion and results include

    Optimized Variables of the Study of Λb\Lambda_b Polarization

    Full text link
    The value of the bb-baryon polarization can be extracted from inclusive data at LEP with better than 10\% precision based on current statistics. We present a new variable by which to measure the polarization, which is the ratio of the average electron energy to the average neutrino energy. This variable is both sensitive to polarization and insensitive to fragmentation uncertainties.Comment: 10 pages (LaTeX), 2 figures, MIT-CTP-2270, CERN-PPE/94-0
    corecore