1,126 research outputs found

    Harmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups

    Get PDF
    We show that there is a remarkable connection between the harmonic superspace (HSS) formulation of N=2, d=4 supersymmetric quaternionic Kaehler sigma models that couple to N=2 supergravity and the minimal unitary representations of their isometry groups. In particular, for N=2 sigma models with quaternionic symmetric target spaces of the form G/HXSU(2) we establish a one-to-one mapping between the Killing potentials that generate the isometry group G under Poisson brackets in the HSS formulation and the generators of the minimal unitary representation of G obtained by quantization of its geometric realization as a quasiconformal group. Quasiconformal extensions of U-duality groups of four dimensional N=2, d=4 Maxwell-Einstein supergravity theories (MESGT) had been proposed as spectrum generating symmetry groups earlier. We discuss some of the implications of our results, in particular, for the BPS black hole spectra of 4d, N=2 MESGTs.Comment: 20 pages; Latex file: references added; minor cosmetic change

    Medium effects in the production and decay of ω\omega- and ρ\rho-resonances in pion-nucleus interactions

    Full text link
    The ω\omega- and ρ\rho-resonance production and their dileptonic decay in πA\pi^- A reactions at GSI energies are calculated within the intranuclear cascade (INC) approach. The invariant mass distribution of the dilepton pair for each resonance is found to have two components which correspond to the decay of the resonances outside and inside the target nucleus. The latter components are strongly distorted by the nuclear medium due to resonance-nucleon scattering and a possible mass shift at finite baryon density. These medium modifications are compared to background sources in the dilepton spectrum from πN\pi N bremsstrahlung and the Dalitz decays of Δ\Delta's and η\eta mesons produced in the reaction.Comment: 10 pages, LaTeX, plus 4 postscript figures, submitted to Phys. Lett.

    Characteristic distributions of finite-time Lyapunov exponents

    Full text link
    We study the probability densities of finite-time or \local Lyapunov exponents (LLEs) in low-dimensional chaotic systems. While the multifractal formalism describes how these densities behave in the asymptotic or long-time limit, there are significant finite-size corrections which are coordinate dependent. Depending on the nature of the dynamical state, the distribution of local Lyapunov exponents has a characteristic shape. For intermittent dynamics, and at crises, dynamical correlations lead to distributions with stretched exponential tails, while for fully-developed chaos the probability density has a cusp. Exact results are presented for the logistic map, x4x(1x)x \to 4x(1-x). At intermittency the density is markedly asymmetric, while for `typical' chaos, it is known that the central limit theorem obtains and a Gaussian density results. Local analysis provides information on the variation of predictability on dynamical attractors. These densities, which are used to characterize the {\sl nonuniform} spatial organization on chaotic attractors are robust to noise and can therefore be measured from experimental data.Comment: To be appear in Phys. Rev

    Расчет гашения обратного напряжения в импульсной схеме

    Get PDF
    Grid and e-science infrastructure interoperability is an increasing demand for Grid applications but interoperability based on common open standards adopted by Grid middle-wares are only starting to emerge on Grid infrastructures and are not broadly provided today. In earlier work we have shown how open standards can be improved by lessons learned from cross-Grid applications that require access to both, High Throughput Computing (HTC) resources as well as High Performance Computing (HPC) resources. This paper provides more insights in several concepts with a particular focus on effectively describing Grid job descriptions in order to satisfy the demands of e-scientists and their cross-Grid applications. Based on lessons learned over years gained with interoperability setups between production Grids such as EGEE, DEISA, and NorduGrid, we illustrate how common open Grid standards (i.e. JSDL and GLUE2) can take cross-Grid application experience into account

    Rheological Chaos in a Scalar Shear-Thickening Model

    Get PDF
    We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in which the shear stress \sigma is driven at a constant shear rate \dot\gamma and relaxes by two parallel decay processes: a nonlinear decay at a nonmonotonic rate R(\sigma_1) and a linear decay at rate \lambda\sigma_2. Here \sigma_{1,2}(t) = \tau_{1,2}^{-1}\int_0^t\sigma(t')\exp[-(t-t')/\tau_{1,2}] {\rm d}t' are two retarded stresses. For suitable parameters, the steady state flow curve is monotonic but unstable; this arises when \tau_2>\tau_1 and 0>R'(\sigma)>-\lambda so that monotonicity is restored only through the strongly retarded term (which might model a slow evolution of material structure under stress). Within the unstable region we find a period-doubling sequence leading to chaos. Instability, but not chaos, persists even for the case \tau_1\to 0. A similar generic mechanism might also arise in shear thinning systems and in some banded flows.Comment: Reference added; typos corrected. To appear in PRE Rap. Com

    Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field

    Full text link
    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect

    Weak antiferromagnetism due to Dzyaloshinskii-Moriya interaction in Ba3_3Cu2_2O4_4Cl2_2

    Full text link
    The antiferromagnetic insulating cuprate Ba3_3Cu2_2O4_4Cl2_2 contains folded CuO2_2 chains with four magnetic copper ions (S=1/2S=1/2) per unit cell. An underlying multiorbital Hubbard model is formulated and the superexchange theory is developed to derive an effective spin Hamiltonian for this cuprate. The resulting spin Hamiltonian involves a Dzyaloshinskii-Moriya term and a more weak symmetric anisotropic exchange term besides the isotropic exchange interaction. The corresponding Dzyaloshinskii-Moriya vectors of each magnetic Cu-Cu bond in the chain reveal a well defined spatial order. Both, the superexchange theory and the complementary group theoretical consideration, lead to the same conclusion on the character of this order. The analysis of the ground-state magnetic properties of the derived model leads to the prediction of an additional noncollinear modulation of the antiferromagnetic structure. This weak antiferromagnetism is restricted to one of the Cu sublattices.Comment: 13 pages, 1 table, 4 figure

    Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    Get PDF
    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion
    corecore