482 research outputs found

    The role of the receptor tyrosine kinase RET as a dependence receptor during enteric nervous system formation.

    Get PDF
    Enteric neurons are derived from vagal and sacral neural crest cell populations. Using human embryonic tissue aged 4-14 weeks of gestation the timing and pattern of gastrointestinal colonisation by vagal neural crest cells, and the development of interstitial cells of Cajal and the smooth musculature of the gut, were investigated using immunohistochemistry. Formation of both the enteric nervous system and smooth muscle involves rostrocaudal migration and maturation of these tissues. The gut is fully colonised by neural crest cells at week 7 and these cells first form the myenteric plexus external to the future circular muscle layer. Secondary centripetal migration to the submucosal plexus occurs at week 8 in the oesophagus and week 11 in the midgut. Smooth muscle appears at week 8, first as the circular muscle layer, with secondary formation of the longitudinal layer. ICCs are present from week 8 and develop in close association with the myenteric plexus in the midgut and hindgut. At week 14 all components required for a mature gut are present. Rearranged during transfection (RET), a tyrosine kinase receptor and the most commonly linked gene to the enteric nervous system developmental disorder, Hirschsprung's disease, has been described in vitro as a dependence receptor, i.e.: expression of the receptor causes a cellular dependency on its ligand. In order to test whether RET functions as a dependence receptor in vivo constructs designed to perturb the caspase dependent cleavage of RET were introduced by electroporation of neural crest in E1.5 chicken embryos. Inhibition of Caspase-9 dependent apoptosis reveals a role for cell death in early control of neural crest cell numbers. No effect is observed when intracellular wildtype RET is introduced. However, introduction of a mutated form of RET induces a delay in the migration and differentiation of enteric precursors. These observations, combined with Tunel and ret in situ data, suggest a role for RET as a dependence receptor in vivo via a caspase-9 dependent mechanism

    Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Get PDF
    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure of the lunar dust to UV radiation under vacuum was also found to lead to hydroxyl radical production. After grinding, we have also monitored loss of reactivity of the dusts by exposing them to conditions of known humidity and temperature. From these tests, it was found that the reactivity half-life of lunar simulant is approximately 3 hours, while that of quartz is approximately 2 hours. Placing lunar dust in solution could lead to effects on mechanical and physiological systems, as well as other biological systems. For instance, while it is known that lunar dust is highly abrasive and caused a variety of problems with suits and equipment during Apollo, it is unknown as to how these properties might be affected in the presence of water or other liquids. It is possible that the dust may release minerals (e.g., metallic nanophase Fe) into solution that could speed corrosion or rust. Also, as lunar dust produces hydroxyl radicals (and possibly other reactive oxygen species) in solution, these radicals could also lead to the breakdown of suit or habitat materials. In the body (i.e., in lung solution), the effects could be two-fold. First, if the lunar dust dissolves, it may release an excess of elements (such as zero-valence metallic Fe) that are necessary for bodily functions but only in certain concentration ranges. For lunar dust, the presence of nanophase iron being released into the body is a concern. Secondly, the hydroxyl radicals or other reactive oxygen species produced by the dust in solution could conceivably interact with cells, leading to various problems. We have studied the dissolution of both ground and unground lunar simulant in buffer solutions of different pH. The concentration of a number of species was determined using mass spectrometry. These studies showed that lowering the pH of the solution causes a dramatic increase in the amount of each element released into solution and that grinding also produces higher concentrations. Finally, we have perfmed initial tests aimed at understanding the effects of lunar simulant on cellular systems. Alveolar epithelial cells were cultured and exposed to different concentrations of dust suspended in cell culture media. After predetermined amounts of time, the media was removed and the concentrations of important inflammatory cytokines (IL6, IL8, and TNF-alpha ) were measured. The results of these tests are being used to develop the correct protocols for tests to be performed using lunar dust samples

    Laser Payloads on Small Satellites

    Get PDF
    Laser payloads on satellites have the ability to enhance our communications capabilities and information gathering power from space. Implementation of lasers to Lightsats provides one method to assess the effectiveness of these technologies at reduced risk. This paper will focus on the main applications of lasers in space and how laser systems may be adapted to the Lightsat environment. This will include a discussion of the different types of lasers, which types are suitable for space based payloads, and which of these is suitable for what types of applications. Included in this discussion will be the selection criteria based on efficiency, weight, lifetime, size, and complexity. A brief description of diode, solid state, and diode pumped solid state lasers will follow. In addition, a detailed examination of the specific factors that are the driving design considerations for laser payloads will be presented

    A model-theoretic interpretation of environmentally-induced superselection

    Full text link
    Environmentally-induced superselection or "einselection" has been proposed as an observer-independent mechanism by which apparently classical systems "emerge" from physical interactions between degrees of freedom described completely quantum-mechanically. It is shown that einselection can only generate classical systems if the "environment" is assumed \textit{a priori} to be classical; einselection therefore does not provide an observer-independent mechanism by which classicality can emerge from quantum dynamics. Einselection is then reformulated in terms of positive operator-valued measures (POVMs) acting on a global quantum state. It is shown that this re-formulation enables a natural interpretation of apparently-classical systems as virtual machines that requires no assumptions beyond those of classical computer science.Comment: 15 pages, 1 figure; minor correction

    GLAST Large Area Telescope Multiwavelength Planning

    Get PDF
    Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-spectrum blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch

    Spin-orbit final state interaction in the framework of Glauber theory for (e,e'p) reactions

    Get PDF
    We investigate the reactions D(e,e'p)n and D(\vec e,e'p)n at GeV energies and discuss the opportunities to distinguish between different models for the nuclear ground state by measuring the response functions. In calculating the final-state interaction (FSI) we employ Glauber theory, and we also include relativistic effects in the electromagnetic current. We include not only the central FSI, but also the spin-orbit FSI which is usually neglected in (e,e'p) calculations within the Glauber framework and we show that this contribution plays a crucial role for the fifth response function. All of the methods developed here can be applied to any target nucleus.Comment: 20 pages, 12 figures, minor change in figures 3 and 4 (changed beam energy), correction of error in figure 4 in the previous replacemen

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex

    Discriminant Analysis and Secondary-Beam Charge Recognition

    Full text link
    The discriminant-analysis method has been applied to optimize the exotic-beam charge recognition in a projectile fragmentation experiment. The experiment was carried out at the GSI using the fragment separator (FRS) to produce and select the relativistic secondary beams, and the ALADIN setup to measure their fragmentation products following collisions with Sn target nuclei. The beams of neutron poor isotopes around 124La and 107Sn were selected to study the isospin dependence of the limiting temperature of heavy nuclei by comparing with results for stable 124Sn projectiles. A dedicated detector to measure the projectile charge upstream of the reaction target was not used, and alternative methods had to be developed. The presented method, based on the multivariate discriminant analysis, allowed to increase the efficacy of charge recognition up to about 90%, which was about 20% more than achieved with the simple scalar methods.Comment: 6 pages, 7 eps figures, elsart, submitted to Nucl. Instr. and Meth.

    Gross Properties and Isotopic Phenomena in Spectator Fragmentation

    Get PDF
    A systematic study of isotopic effects in the break-up of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory. Searching for signals of criticality in the fragment production we have applied the model independent universal fluctuations theory already proposed to track criticality signals in multifragmentation to our data. The fluctuation of the largest fragment charge and of the asymmetry of the two and three largest fragments and their bimodal distribution have also been analysed.Comment: 6 pages, 4 figures, IX International Conference on Nucleus-Nucleus Collisions, Rio de Janeiro, Brazil, August 28 - September 1, 200
    corecore