14 research outputs found

    Final state effects on superfluid 4^{\bf 4}He in the deep inelastic regime

    Get PDF
    A study of Final State Effects (FSE) on the dynamic structure function of superfluid 4^4He in the Gersch--Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distribution and the semidiagonal two--body density matrix. The influence of these ground state quantities on the FSE is analyzed. A variational form of ρ2\rho_2 is used, even though simpler forms turn out to give accurate results if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best agreement with experiment being obtained with n0=0.082n_0=0.082. Sum rules of the FSE broadening function are also derived and commented. Finally, it is shown that Gersch--Rodriguez theory produces results as accurate as those coming from other more recent FSE theories.Comment: 20 pages, RevTex 3.0, 11 figures available upon request, to be appear in Phys. Rev.

    Temperature-dependent nonlinear analysis of shallow shells: A theoretical approach

    Get PDF
    The paper presents a theoretical formulation for the computation of temperature-dependent nonlinear response of shallow shells with single and double curvatures subjected to transverse mechanical loads while being exposed to through-depth non-uniform heating regimes such as those resulting from a fire. The material nonlinearity arises from taking into consideration the degradation of the material elastic behaviour at elevated temperatures under quasi-static conditions. Two types of boundary conditions are considered, both of which constrain the transverse deflections and allow the rotations about the edge axis to be free. One of the boundary conditions permits lateral translation (laterally unrestrained) and the other one does not (laterally restrained). A number of examples are solved for shallow shells under different types of loading conditions including: an exponential "short hot" fire leading to a high temperature over a relatively short duration; and an exponential "long cool" fire of lower temperature over a longer duration. The limits of the shallow shell equations are investigated through comparison studies. Results show that while current numerical approaches for analysis of laterally restrained shallow shells are often computationally intensive, the proposed approach offers an adequate level of accuracy with a rapid convergence rate for such structures.The Edinburgh Research Partnership in Engineering (ERPE)

    On thermo-mechanical nonlinear behaviour of shallow shells

    Get PDF
    The structural performance of thin shells is largely dictated by their curvature and the degree of lateral restraint at the shell edges. The present study is an attempt to theoretically investigate the influence of such factors on nonlinear thermo-mechanical response of shallow shells with single and double curvatures. For the mechanical loading, a transverse load is assumed and for the thermal loading, a through-depth thermal gradient is applied on the shallow shell. Two types of boundary conditions are considered for the shallow shell, both of which constrain transverse deflections of the shell but allow rotations parallel to the shell boundaries to be free. One of the boundary conditions permits lateral translation (laterally unrestrained) and the other one does not (laterally restrained). The fundamental nonlinear equations of shallow shells are derived based on the quasi-static conditions. The validity and reliability of the proposed approach is assessed by calculating several numerical examples for shallow shells under various mechanical and thermal loads. It is found that the proposed formulation, in particular, can adequately capture the nonlinear behaviour of laterally restrained shallow shells

    Observational and genetic associations between cardiorespiratory fitness and cancer: a UK Biobank and international consortia study

    Get PDF
    Background The association of fitness with cancer risk is not clear. Methods We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method. Results After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min−1⋅kg−1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73–0.89), colorectal (0.94, 0.90–0.99), and breast cancer (0.96, 0.92–0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min−1⋅kg−1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86–0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated. Discussion Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention

    Progressive Collapse Resistance of Braced Steel Frames Exposed to Fire

    No full text

    Computational modeling of mold filling and related free-surface flows in shape casting: an overview of the challenges involved

    No full text
    Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed
    corecore