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Abstract

The paper presents a theoretical formulation for the computation of temperature-

dependent nonlinear response of shallow shells with single and double curvatures

subjected to transverse mechanical loads while being exposed to through-depth

non-uniform heating regimes such as those resulting from a fire. The material

nonlinearity arises from taking into consideration the degradation of the ma-

terial elastic behaviour at elevated temperatures under quasi-static conditions.

Two types of boundary conditions are considered, both of which constrain the

transverse deflections and allow the rotations about the edge axis to be free. One

of the boundary conditions permits lateral translation (laterally unrestrained)

and the other one does not (laterally restrained). A number of examples are

solved for shallow shells under different types of loading conditions including: an

exponential “short hot” fire leading to a high temperature over a relatively short

duration; and an exponential “long cool” fire of lower temperature over a longer

duration. The limits of the shallow shell equations are investigated through

comparison studies. Results show that while current numerical approaches for

analysis of laterally restrained shallow shells are often computationally inten-

sive, the proposed approach offers an adequate level of accuracy with a rapid

convergence rate for such structures.
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1. Introduction

Shallow shells are widely used in the design of lightweight thin-walled struc-

tures. They can deliver useful load-carrying capacity by virtue of their curva-

tures, thereby effectively resisting the externally applied loads with optimum

use of materials. The most common applications are in buildings (typically as

roof structures), aerospace vehicles, ship hulls, pressure vessels, and car bodies.

Most of these structures are potentially at risk of being exposed to severe non-

uniform thermal gradients while also externally loaded, such as those resulting

from a fire. The consequences of such loading conditions may lead to a reduc-

tion of the strength and stiffness of the structure and the development of large

deflections, leading to the failure of the structure under the most severe cases.

Research in this area has been often focused towards developing efficient shell

finite elements (e.g. see Refs. [1–7]). Numerical techniques have been widely

used to study the nonlinear behaviour of shells, mainly for their flexibility and

ability in dealing with shell problems in comparison with theoretical approaches.

Kumar and Palaninathan [8] employed an eight-node degenerated layered

shell element to investigate the geometric nonlinear response of laminated com-

posite cylindrical panels to axial compression and central concentrated load.

Their numerical results showed that boundary conditions (BCs) have signifi-

cant influence on the load-carrying capacity of cylindrical panels so that those

with free curved edges and hinged longitudinal edges undergo either limit point

or bifurcation failure at very low load levels in comparison with other straight

and clamped edge conditions. Using the differential quadrature method, Wang

[9] solved the geometric nonlinear buckling problem of thin doubly-curved or-

thotropic shallow shells with hinged edges. The buckling loads obtained by this

method were lower than semi-analytical solutions obtained by either adjacent

equilibrium method or partitioned solution method. It was concluded that to
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ensure the convergence of the solutions, an alternative method should be used

as using small load increment increases the computational time required for

solving nonlinear problems.

Panda and Singh [10] developed a nonlinear finite element (FE) model to

analyse the thermal buckling and post-buckling strength of laminated composite

shallow cylindrical/hyperboloid shell panels subjected to uniform temperature

rise. In their model, the full nonlinearity effect in the geometry was taken into

account in a Green-Lagrange sense based on the higher order shear deforma-

tion theory. Their numerical results indicated that the post-buckling strength

in thermal environment is higher for hyperboloid shell panels in comparison

with cylindrical panels. Altekin and Yukseler [11] employed finite difference

and Newton-Raphson methods to solve the geometrically nonlinear axisymmet-

ric bending problem of homogeneous and isotropic shallow spherical shells with

either clamped or simply supported edges under axisymmetric loads. Their

study showed that for partially loaded shells, the influence of the BCs on the

central deflection of the shell is negligible. Civalek [12] used discrete singu-

lar convolution and differential quadrature methods for the nonlinear static and

dynamic analysis of simply supported (laterally unrestrained) and clamped shal-

low spherical shells resting on elastic foundations. The dynamic analysis of shell

structures are well documented in the literature (e.g., see Refs. [13–20]).

Alongside with the advances in numerical techniques, a significant improve-

ment has also been observed in the capability of analytical and semi-analytical

approaches to deal with many difficulties in shell nonlinear problems. Develop-

ment of appropriate theoretical approaches is not only useful for benchmarking

FE codes developed for shell-type structures but also for visualising internal

structures in composite shells in order to develop much deeper insights into

their load-carrying mechanisms. Woo and Meguid [21] studied the nonlinear

analysis of simply supported (laterally unrestrained) shallow spherical shells

with functionally graded (FG) material properties subjected to transverse me-

chanical loads and through-depth thermal gradients. The governing equations

were established based on the von Kármán theory for large out-of-plane deflec-
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tions and were solved using series solutions. It was revealed that considering

thermo-mechanical coupling effects in the shell formulation can affect the nonlin-

ear response of the shell. Based on the Donnell thin shell theory, van Campen

et al. [22] developed semi-analytical methods using the adjacent equilibrium

method and partitioned solution method to study the stability behaviour of

doubly-curved shallow orthotropic panels under external pressure. In the for-

mer method, solutions at the neutral equilibrium position were perturbated to

calculate the bifurcation buckling load. However, in the latter method, solutions

of the equilibrium and compatibility equations of the panel were perturbated to

calculate both the bifurcation buckling and post-buckling solutions that are not

confined in the initial post-buckling region. Comparing buckling loads for pan-

els with simply supported and hinged BCs, they showed that the lower buckling

load is produced for cases with hinged BCs due to pre-buckling compression.

The nonlinear analysis of an imperfect shallow spherical shell on a Paster-

nak foundation subjected to uniform loads was presented by Nie [23]. The shell

was assumed elastically restrained against rotational, out-of-plane and in-plane

displacements. The asymptotic iteration method was applied to obtain an an-

alytical expression for the external load and the central deflection of the shell.

Numerical results indicated that imperfections cause a drop in the load-bearing

capacity of the shell. Heuer and Ziegler [24] studied the thermal snap-through

and snap-buckling of symmetrically layered shallow shells with polygonal plan-

forms and laterally restrained BCs using a two degrees of freedom model de-

rived from a Ritz-Galerkin approximation. Duc and Van Tung [25] studied the

nonlinear response of FG cylindrical panels to uniform lateral pressure and uni-

form and through-depth thermal gradients by an analytical approach associated

with a Galerkin method. Formulation was based on the classical shell theory,

considering the von Kármán-Donnell type of kinematic nonlinearity and initial

geometrical imperfection. Three BCs were considered in their analysis arising

from restriction on the lateral movement of curved and straight edges of the

cylindrical panel. Temperature-dependency of material properties of the panel

were not taken into consideration. Numerical results revealed that in-plane re-
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straint and temperature conditions play major roles in dictating the response

of FG cylindrical panels.

Shen and his colleagues studied the post-buckling behaviour of FG cylindri-

cal shells in thermal environments under an axial compression [26, 27], a lateral

pressure [28], and a uniform temperature rise over the shell surface and through

the shell thickness [29] using the classical shell theory with the von Kármán-

Donnell-type of kinematic nonlinearity assumptions. Material properties of the

shell were assumed to be temperature-dependent and graded in the thickness di-

rection according to a simple power law distribution. A boundary layer theory of

shell buckling, which includes the effects of nonlinear pre-buckling deformations,

large deflections in the post-buckling range, and initial geometric imperfections

of the shell was used. A singular perturbation technique was employed to ob-

tain the buckling loads and post-buckling equilibrium paths. Yang et al. [30]

evaluated the effects of thermal loads, temperature-dependent properties, ini-

tial geometric imperfection, volume fraction index, and geometrical parameters

on the post-buckling behaviour of FG cylindrical panels with either simply sup-

ported (laterally unrestrained) or clamped edges subjected to a combined initial

axial force and a uniform temperature change. Their analysis was based on the

classical shell theory and the von Kármán-Donnell-type kinematic relations.

The critical buckling temperature and the post-buckling temperature-deflection

curves were determined using a semi-analytical differential quadrature-Galerkin

method associated with an iterative algorithm. They reported that both the

buckling temperature and the equilibrium path in the post-buckling regime be-

come lower when the temperature-dependent properties are taken into account

in the analysis.

Shahsiah et al. [31] obtained analytical solutions for the thermal instability

of FG thin shallow spherical shells based on the Donnell-Mushtari-Vlasov the-

ory. The shell was assumed under three types of thermal loading including a

uniform temperature rise, a linear radial temperature, and a nonlinear radial

temperature. Girish and Ramachandra [32] presented analytical solutions of

the post-buckling problem of symmetric and antisymmetric cross-ply laminated
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cylindrical shell panels under thermo-mechanical loading based on higher or-

der shear deformation theory. They reported that the shear deformation is less

effective on the critical buckling loads of antisymmetric cross-ply shell panels

in comparison to symmetric cross-ply shell panels. Nie et al. [33] studied the

nonlinear buckling of imperfect orthotropic shallow shells on an elastic founda-

tion using the asymptotic iteration method. Amabili [34] presented the large

amplitude of the response of simply supported (laterally not fully unrestrained)

doubly-curved shallow shells with rectangular planform to static and dynamic

loads. He used the Donnell and Novozhilov shell theories retaining in-plane iner-

tia to obtain the geometrically nonlinear response of the shell. Hamed et al. [35]

theoretically and experimentally examined the failure behaviour of thin-walled

shallow concrete domes. Their theoretical study included the development of

an analytical model for the nonlinear behaviour of materials under failure levels

of load, the creep and shrinkage of the concrete material, and the buckling of

the dome.

An analytical approach was employed by Bich and Van Tung [36] to study

the nonlinear stability of perfect and imperfect FG shallow spherical shells under

uniform external pressure with and without considering the effects of uniform

and through-depth thermal gradients. In their approach, one term approxi-

mation of deflection was used to determine the extremum buckling loads and

load-deflection curves for laterally restrained and unrestrained shallow spher-

ical shells. Material properties were assumed to be temperature-independent.

Their results showed that while the effect of temperature field on the nonlinear

response of FG shallow spherical shells under thermo-mechanical loads is signifi-

cant, the effect of initial imperfection on the nonlinear response of mechanically-

loaded FG shallow spherical shells is weak. The nonlinear buckling behaviour of

homogeneous and non-homogeneous orthotropic thin-walled truncated conical

shells under axial load was presented by Sofiyev and Kuruoglu [37]. The stability

and compatibility equations of the problem were derived using the large defor-

mation theory with the von Kármán-Donnell type of kinematic nonlinearity. It

was reported that for long truncated conical shells, the effect of non-homogeneity
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on the nonlinear axial buckling load is negligible. Xue et al. [38] extended the

von Kármán-Donnell shell theory for long cylindrical shells undergoing large

flexural deflections. It was shown that the initial curvature has a significant

influence on the behavior of long cylindrical shells. Recently, Tornabene et al.

[39] studied the static deformations of doubly-curved and free-form sandwich

shells with either the face sheets or the core made of FG materials. Their focus

was on recovering accurate values of through-the-depth transverse normal and

shear strains and stresses. The generalized differential quadrature method was

employed to solve the system of governing equations for different higher order

shear deformation theories. They found that stresses of FG structures are in-

between those for homogeneous structures made of the two constituents of the

FG material.

In most composite shell analyses, spatially varying material properties are

not employed and the analysis has been often limited to temperature sensitive

material properties. Hence, in the present paper, the formulation by Khazaeine-

jad et al. [40] is extended to account for the temperature-dependent nonlinear

response of shallow shells with single and double curvatures on a rectangular

planform. A shallow shell is subjected to a transverse mechanical load while

it is exposed to through-depth non-uniform temperature profiles. Assuming

a comparatively small rise for the shell, its geometry is expressed using the

Cartesian coordinates instead of curvilinear coordinates. Two limiting cases are

considered for the shell BCs, assuming the shell edges to be either unrestrained

or restrained against lateral translations while transverse deflections along the

shell boundaries are restrained and rotations parallel to the shell boundary

are free. Results are presented for three different cases, namely isotropic, or-

thotropic FG, and shallow shells with temperature-dependent material proper-

ties for both the chosen BCs. In latter case, the shell nonlinear response is stud-

ied under two common types of quasi-static fire exposure conditions including: a

“short hot” exponential fire of high temperature over a short post-flashover du-

ration [41]; and a “long cool” exponential fire with lower maximum temperature

over a longer post-flashover period [41]. Quiver plots of principal stresses and
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Figure 1: Hierarchy of various shell theories as a function of their applicable ranges of sub-

tended angle. The figure is adapted from Donnell [42]. A shallow shell typically has a rise of

less than one-fifth of the smallest dimension of its planform. In the case of ‘extremely shallow

shells’, the minimum radius of curvature of the shell is more than two times larger than its

maximum planform dimension [43].

membrane tractions are also graphically illustrated for the examples considered.

Comparison studies between the results obtained from the proposed formulation

and those obtained from FE analyses show that the proposed approach offers a

rapid convergence rate as well as an adequate level of accuracy for ‘extremely

shallow shells’ (see Figure 1).

2. Kinematic and constitutive relations

Consider a shallow shell with a rectangular planform in the Cartesian coor-

dinates system (x, y, z). The rise of the shell is assumed to be relatively small

in comparison to its other dimensions. This is based on the shallow shell theory

assumption in which the rise of a shallow shell above its planform is typically

assumed to be less than one-fifth the smallest dimension of the planform (see

Figure 1). The shell is assumed to undergo large deflections. In such a case, the

von Kármán large deflection assumption which accounts for the stretching of the

middle surface of the shell can be used. The shallow shell kinematic relations
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including thermal effects are

(1)ε=


∂u
∂x + 1

2

(
∂w
∂x

)2
+ w

Rx

∂v
∂y + 1

2

(
∂w
∂y

)2
+ w

Ry

∂u
∂y + ∂v

∂x + ∂w
∂x

∂w
∂y + 2w

Rxy

+z


−∂

2w
∂x2

−∂
2w
∂y2

−2 ∂2w
∂x∂y

+


αxx(z, θ) θ(z)

αyy(z, θ) θ(z)

αxy(z, θ) θ(z)


= ε0 + zε1 + εθ

where u, v and w are the displacements of the middle surface of the shell in

the x, y and z-directions, respectively, αxx(θ, z), αyy(θ, z), and αxy(θ, z) are the

temperature-dependent transformed coefficients of thermal expansion, θ(z) rep-

resents the temperature increase through the depth of the shell, Rxy represents

the twist radius of the middle surface of the shell, and Rx and Ry are the radii

of curvature of the undeformed shell, as illustrated in Figure 2 for shallow shells

with single or double curvature.

The in-plane stresses vary linearly from the middle surface of the shell as

follows

σ =


σxx

σyy

σxy

 = Q [ε0 + zε1 + εθ] (2)

Hyperbolic paraboloidal, =-R Rx y

Rx

y

a

b

x1

x
3

x

x2

z

Ry Ry

R
x

Spherical, =R Rx y

y

a

b
x1

x
3

x

x2

z

y

a

b

Cylindrical, =Ry ¥

x1

x
3

R
x

x

x2

z

Figure 2: Common types of curvature for shallow shells with a rectangular planform. The

curvilinear coordinates on the middle surface of the shells are replaced with a Cartesian

coordinate system due to a comparatively small rise above the shells’ rectangular planform.

It must be noted that for untwisted shallow shells the radius Rxy is infinite.
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The membrane tractions (forces) for the shallow shell can be obtained by inte-

grating the in-plane stresses of the shell over its depth

N =


Nxx

Nyy

Nxy

 = Aε0 + Bε1 −Nθ (3)

The moment resultants can also be obtained by twice integrating the in-plane

stresses over the depth of the shell as follows

M =


Mxx

Myy

Mxy

 = Bε0 + Dε1 −Mθ (4)

where the coefficient matrices A, B and D are related to the stiffness matrix Q

by the following relations

(5a)


A

B

D

 =

∫ h
2

−h
2

Q


1

z

z2

 dz

In the above expressions, Nθ and Mθ are thermal stress and moment resultants,

respectively, defined by

(6a)Nθ =

∫ h
2

−h
2

Q


αxx(z, θ)

αyy(z, θ)

αxy(z, θ)

 θ(z)dz

(6b)Mθ =

∫ h
2

−h
2

Q


αxx(z, θ)

αyy(z, θ)

αxy(z, θ)

 θ(z)zdz

in which Q is the stiffness matrix associated with the material properties.

3. Derivation of governing equations

Under quasi-static conditions, the nonlinear response of shallow shells can

be determined by solving a system of two coupled nonlinear equations simulta-

neously. This includes the compatibility and equilibrium equations of the shell.
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The compatibility equation relates the internal membrane forces caused by large

deformations to the out-of-plane displacement of the shell. It can be obtained

by taking the second derivatives of the strains and combining the resulting ex-

pressions as follows

∂2εxx
∂y2

+
∂2εyy
∂x2

− ∂
2γxy
∂x∂y

=

(
∂2w

∂x∂y

)2

− ∂
2w

∂x2
∂2w

∂y2
+

1

Ry

∂2w

∂x2
+

1

Rx

∂2w

∂y2
− 2

Rxy

∂2w

∂x∂y
(7)

Since the membrane tractions vary only over the shell surface and not through

the depth of the shell, they can be expressed by stress function F (x, y) as follows

N =


∂2F
∂y2

∂2F
∂x2

− ∂2F
∂x∂y

 (8)

By rearranging Eq. (3) along with using Eq. (8), the middle plane strains can

be written as
(9)ε0 = aN + bε1 + aNθ

where a and b are related to the stiffness matrices A and B as defined in the

following
(10a)a = A−1

(10b)b = A−1B

As can be seen, the effect of material nonlinearity is reflected in the matrices a

and b. Substituting Eqs. (8) and (9) into the strain compatibility equation (7)

the following nonlinear equation is derived

a22
∂4F

∂x4
− 2a26

∂4F

∂x3∂y
+ (2a12 + a66)

∂4F

∂x2y2
− 2a16

∂4F

∂x∂y3
+ a11

∂4F

∂y4

−
(
∂2w

∂x∂y

)2

+
∂2w

∂x2
∂2w

∂y2
+ b12

∂4w

∂x4
+ (2b26 − b16)

∂4w

∂x3∂y

+ (b11 + b22 − 2b66)
∂4w

∂x2∂y2
+ (2b16 − b26)

∂4w

∂x∂y3
+ b12

∂4w

∂y4
− 1

Rx

∂2w

∂y2

− 1

Ry

∂2w

∂x2
+2

1

Rxy

∂2w

∂x∂y
=−a12

∂2Nθ
xx

∂x2
+a16

∂2Nθ
xx

∂x∂y
−a11

∂2Nθ
xx

∂y2
−a22

∂2Nθ
yy

∂x2

+ a26
∂2Nθ

yy

∂x∂y
− a12

∂2Nθ
yy

∂y2
− a26

∂2Nθ
xy

∂x2
+ a66

∂2Nθ
xy

∂x∂y
− a16

∂2Nθ
xy

∂y2

(11)
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In the above equation, F and w are both unknown. Therefore, another equation

is required, that is the equilibrium equation of the shell which relates the axial

forces to the out-of-plane displacement of the shell as follows

(12)

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+Nxx

∂2w

∂x2
+Nyy

∂2w

∂y2

+ 2Nxy
∂2w

∂x∂y
−
(
Nxx
Rx

+
Nyy
Ry

+
2Nxy
Rxy

)
+ q = 0

where q(x, y) represents the transverse mechanical load. From substituting Eq.

(9) into Eq. (4), the moment resultants can be rewritten as

(13)M = cN + dε1 + cNθ −Mθ

where the coefficient c and d are related to the stiffness matrices A, B, and D

via
(14a)c = BA−1

(14b)d = D−BA−1B

Upon substitution of Eq. (13) into Eq. (12), the nonlinear equilibrium equation

can be obtained as

d11
∂4w

∂x4
+ 2(d16 + d16)

∂4w

∂x3∂y
+ 2(d12 + 2d66)

∂4w

∂x2y2
+ 4d26

∂4w

∂x∂y3
+ d22

∂4w

∂y4

− ∂
2F

∂y2

(
∂2w

∂x2
− 1

Rx

)
+2

∂2F

∂x∂y

(
∂2w

∂x∂y
− 1

Rxy

)
− ∂

2F

∂x2

(
∂2w

∂y2
− 1

Ry

)
−c12

∂4F

∂x4

−(2c26−c16)
∂4F

∂x3∂y
−(c11+c22−2c66)

∂4F

∂x2y2
−(2c16−c26)

∂4F

∂x∂y3
−c12

∂4F

∂y4
= q

+c11
∂2Nθ

xx

∂x2
+c12

∂2Nθ
xx

∂y2
+2c16

∂2Nθ
xx

∂x∂y
+c12

∂2Nθ
yy

∂x2
+c22

∂2Nθ
yy

∂y2
+2c26

∂2Nθ
yy

∂x∂y

+ c16
∂2Nθ

xy

∂x2
+ c26

∂2Nθ
xy

∂y2
+ 2c66

∂2Nθ
xy

∂x∂y
− ∂2Mθ

xx

∂x2
−
∂2Mθ

yy

∂y2
− 2

∂2Mθ
xy

∂x∂y
(15)

The most common way of solving the differential equations (11) and (15) is

using trigonometric functions, depending on the BCs specified for the shell.

4. Solution of governing equations

In this study, two types of BCs are assumed: (1) edges laterally unrestrained,

thereby permitting lateral translations, while out-of-plane translations are re-

strained along the shell edges and rotations about the edge axes are free. This

12

U
N
C
O
R
R
EC

T
ED

PR
O
O
F



type of BC is referred to as the ‘laterally unrestrained’ BC; and (2) edges lat-

erally restrained, in which all translations are restricted along the shell edges

while the rotation about the edge axes remains free. This type of BC is referred

to as the ‘laterally restrained’ BC.

The assumed BCs are reasonable limiting cases bracketing the conditions

that may be found in real shell structures, except for cases where rotational

restraints are important. The following expression satisfies the BCs for the

out-of-plane displacement

w(x, y) =
∞∑
m=1

∞∑
n=1

wmnSmn (16)

where Smn = sin(m̄x) sin(n̄y) with m̄ = mπ/a and n̄ = nπ/b. The thermal

force and moment resultants can also be expressed by Fourier series as follows

Nθ
xx(x, y)

Nθ
yy(x, y)

Mθ
xx(x, y)

Mθ
yy(x, y)


=

∞∑
m=1

∞∑
n=1



Nθ
mnxx

Nθ
mnyy

Mθ
mnxx

Mθ
mnyy


Smn (17)

where the coefficients are calculated by

Nθ
mnxx

Nθ
mnyy

Mθ
mnxx

Mθ
mnyy


=

4 [−1 + (−1)m] [−1 + (−1)n]

mnπ2



Nθ
xx

Nθ
yy

Mθ
xx

Mθ
yy


(18)

Different transverse mechanical loading conditions can be considered by ex-

pressing the quantity q in a double Fourier series as follows

q(x, y) =

∞∑
m=1

∞∑
n=1

qmnSmn (19)

where

qmn =
4

ab

∫ a

0

∫ b

0

q(x, y)Smndydx (20)

The following loading conditions are then derived:
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For a uniformly distributed load (UDL) of magnitude q:

qmn =
4 [−1 + (−1)m] [−1 + (−1)n]

mnπ2
q (21)

For a sinusoidal loading of magnitude q where m = n = 1:

qmn = q (22)

For a point load of q applied at coordinates (x0,y0):

qmn =
4q0
ab

sin
mπx0
a

sin
nπy0
b

(23)

For the stress function an expression satisfying the stress-free edges case

(for the laterally unrestrained BC) and undeformed edges case (for the laterally

restrained BC) may then be taken as

F (x, y) =
Pxy

2

2bh
+
Pyx

2

2ah
+

∞∑
m=1

∞∑
n=1

FmnSmn (24)

where Px and Py are equivalent reaction loads at the shell boundaries. In the

case of laterally restrained BC, such loads can be obtained using the following

expressions for the elongation of the shell in the x and y directions

(25a)

∫ a

0

∂u

∂x
dx =

∫ a

0

(
a11

∂2F

∂y2
+ a12

∂2F

∂x2
+ b11

∂2w

∂x2
+ b12

∂2w

∂y2
+ a11N

θ
xx

+ a12N
θ
yy −

1

2

(
∂w

∂x

)2
)
dx

(25b)

∫ b

0

∂v

∂y
dy =

∫ b

0

(
a12

∂2F

∂y2
+ a22

∂2F

∂x2
+ b12

∂2w

∂x2
+ b22

∂2w

∂y2
+ a12N

θ
xx

+ a22N
θ
yy −

1

2

(
∂w

∂y

)2
)
dy

Setting the edge displacements to zero after substituting Eqs. (16) and (24)

into Eqs. (25) and performing the integration, yields the following expressions

for the reaction loads
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(26a)Px =
bh
(
a22m̄

2 − a12n̄2
)

8 (a11a22 − a212)
w2
mn +

[−1 + (−1)m] [−1 + (−1)n] bhn̄2

mnπ2
Fmn

+
bh [−1 + (−1)m] [−1 + (−1)n]

[
(a22b11 − a12b12)m̄2 + (a22b12 − a12b22)n̄2

]
mnπ2 (a11a22 − a212)

wmn

+
[−1 + (−1)m] [−1 + (−1)n] bh

mnπ2(a11a22 − a212)

(
a22
Rx
− a12
Ry

)
wmn − bhNθ

xx

(26b)Py =
ah
(
a11n̄

2 − a12m̄2
)

8 (a11a22 − a212)
w2
mn +

[−1 + (−1)m] [−1 + (−1)n] ahm̄2

mnπ2
Fmn

+
ah [−1 + (−1)m] [−1 + (−1)n]

[
(a11b12 − a12b11)m̄2 + (a11b22 − a12b12)n̄2

]
mnπ2 (a11a22 − a212)

wmn

+
[−1 + (−1)m] [−1 + (−1)n] ah

mnπ2(a11a22 − a212)

(
a11
Ry
− a12
Rx

)
wmn − ahNθ

yy

By contrast, when the laterally unrestrained BC is imposed, such reaction

loads are zero and the following expressions can then be obtained for the in-plane

displacements u and v

(27a)

u =

∞∑
m=1

∞∑
n=1

[
−m̄

2

4
w2
mn

(
x+

sin 2m̄x

2m̄

)
sin2 n̄y

+
b11m̄

2 + b12n̄
2

m̄
wmn cos m̄x sin n̄y +

wmn
m̄Rx

cos m̄x sin n̄y

+
a12m̄

2 + a11n̄
2

m̄
Fmn cos m̄x sin n̄y + aa11N

θ
xx + aa12N

θ
yy

]

(27b)

v =

∞∑
m=1

∞∑
n=1

[
− n̄

2

4
w2
mn sin2 m̄x

(
y +

sin 2n̄y

2n̄

)
+
b12m̄

2 + b22n̄
2

n̄
wmn sin m̄x cos n̄y +

wmn
n̄Ry

sin m̄x cos n̄y

+
a22m̄

2 + a12n̄
2

n̄
Fmn sin m̄x cos n̄y + ba12N

θ
xx + ba22N

θ
yy

]

In the case of a laminated shell, the quantities Nθ
xy, Mθ

xy, Q16, Q26 are

zero. It is clear that the coefficients of the in-plane displacements are also

temperature-dependent. Considering the expressions (16)-(24) into the govern-

ing equations (11) and (15), the compatibility and equilibrium equations are
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obtained in terms of Fmn and wmn

(28)

[
a22m̄

4 + (2a12 + a66)m̄2n̄2 + a11n̄
4
]
FmnSmn

− m̄2n̄2w2
mn

(
C2
mn − S2

mn

)
+

[
(b11 + b22 − 2b66)m̄2n̄2 + b12m̄

4 + b12n̄
4 +

n̄2

Rx
+
m̄2

Ry

]
wmnSmn

−
[(
a12N

θ
mnxx + a22N

θ
mnyy

)
m̄2

+
(
a11N

θ
mnxx + a12N

θ
mnyy

)
n̄2
]
Smn = 0

(29)

[
d11m̄

4 + (2d12 + 4d66)m̄2n̄2 + d22n̄
4
]
wmnSmn

−
[
c12m̄

4+(c11+c22−2c66)m̄2n̄2+c12n̄
4+

n̄2

Rx
+
m̄2

Ry

]
FmnSmn

+

(
Pxm̄

2

bh
+
Pyn̄

2

ah

)
wmnSmn − 2m̄2n̄2Fmnwmn

(
S2
mn − C2

mn

)
+

Px
bhRx

+
Py
ahRy

+
[(
c11N

θ
mnxx + c12N

θ
mnyy

)
m̄2

+
(
c12N

θ
mnxx + c22N

θ
mnyy

)
n̄2
]
Smn

−
(
m̄2Mθ

mnxx + n̄2Mθ
mnyy

)
Smn − qmnSmn = 0

where Cmn = cos(m̄x) cos(n̄y). If the left part of Eqs. (28) and (29) are denoted

by X1 and X2, respectively, then from the following equations

(30a)

∫ a

0

∫ b

0

 X1

X2

Smn = 0

two algebraic equations can be derived as follows

(31)

Fmn =
1

(a22m̄4 + (2a12 + a66)m̄2n̄2 + a11n̄4)

[
4m̄2n̄2Hmnw

2
mn

−
[
b12m̄

4 + (b11 + b22 − 2b66)m̄2n̄2 + b12n̄
4 +

n̄2

Rx
+
m̄2

Ry

]
wmn

+
[(
a12N

θ
mnxx + a22N

θ
mnyy

)
m̄2 +

(
a11N

θ
mnxx + a12N

θ
mnyy

)
n̄2
]]

where

(32)Hmn

=
−1 + 2(−1)m + 2(−1)n − (−1)3m − (−1)3n − 3(−1)m+n + (−1)3m+n + (−1)m+3n

3mnπ2
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Likewise, the following load-deflection equation is derived from Eq. (29)

(33)ς1wmn + ς2Fmn + ς3Fmnwmn + ς4 = 0

where the coefficients are defined by

(34a)ς1 =
Pxm̄

2

bh
+
Pyn̄

2

ah
+ d11m̄

4 + (2d12 + 4d66)m̄2n̄2 + d22n̄
4

(34b)ς2 = −
[
c12m̄

4 + (c11 + c22 − 2c66)m̄2n̄2 + c12n̄
4 +

n̄2

Rx
+
m̄2

Ry

]
(34c)ς3 = 8m̄2n̄2Hmn

(34d)

ς4 =
4 [−1 + (−1)m] [−1 + (−1)n]

mnπ2

(
Px
bhRx

+
Py
ahRy

)
+
(
c11N

θ
mnxx + c12N

θ
mnyy

)
m̄2 +

(
c12N

θ
mnxx + c22N

θ
mnyy

)
n̄2

−
(
m̄2Mθ

mnxx + n̄2Mθ
mnyy

)
− qmn

Once the material and geometric parameters are known, the coefficient wmn

can be readily obtained by substituting the stress function from Eq. (31) into

Eq. (33). Having resolved the load-deflection equation, the out-of-plane dis-

placement of the shallow shell can be accurately calculated for an adequate

number of series terms, depending on the specified support conditions.

5. Results and discussion

In this section, a number of examples are solved for isotropic, orthotropic FG,

and temperature-dependent shallow shells with both the chosen BCs. For all

these examples, representations of either principal stresses or membrane trac-

tions in the shell are graphically illustrated to gain a deeper insight into the

nonlinear response of shallow shells with single or double curvature. Table 1

lists the dimensionless quantities used in the following examples.

5.1. Isotropic shallow shells

To verify the accuracy of the proposed approach, a series of comparison

studies are presented. First, four square isotropic shallow cylindrical shells

with different curvatures which were modelled using the FE software ABAQUS
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Table 1: Definitions of dimensionless quantities

Description Definition

Thickness to span ratio h/a

Rise to thickness ratio H/h

Dimensionless membrane traction Na2/E0h
3

Dimensionless UDL qa4/E0h
4

Radius of curvature to span ratio Rx/a and Ry/a

Dimensionless deflection w/h

Dimensionless x-coordinate parameter x/a

(using 1764 S4R5 elements) are compared with the solutions obtained from

the proposed approach. The shells are assumed to deform nonlinearly under a

dimensionless UDL of 10 directed downwards (i.e. top surface loading). The

shell material has an elastic modulus of 27 × 109 N/m2 and Poisson’s ratio of

0.3, while the thickness to span ratio of all the shells is 0.03. The dimensionless

nonlinear responses of the shells with the laterally restrained and unrestrained

BCs are presented in Tables 2 and 3, respectively. The rise of the shells above

their planform is denoted by H and is calculated from R −
√
R2 − a2/4, as

illustrated in Figure 1. It can be seen that the maximum deflection values (at

the centre of the shell) decrease with an increase in the curvature of the shell.

This is due to the increase in the flexural rigidity of the shell, which is caused

by the curvature. In the case of shallow shells with the laterally restrained BC,

very good agreement between the theoretical and FE results has been obtained.

This is very promising since such a BC is practically useful. However, in the case

of laterally unrestrained BC, satisfactory performance of the proposed approach

is limited to extremely shallow shells as shown in Table 3 where the results of

the solutions from the FE simulation and the proposed approach do not agree

for the first three cases. This may be attributed to the significant change in the

shell curvature between the unloaded and the loaded state, which is not able

to be captured by the proposed formulation. The mention of curvature change
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Table 2: Comparison studies for a square isotropic shallow cylindrical shell with the laterally

restrained BC subjected to a UDL using three terms in the series solutions

Radius of

curvature

to span

ratio

Rise to

thickness

ratio

Angle

subtended∗

Dimensionless

central de-

flection -

Proposed

approach

ABAQUS simulation

Dimensionless

central de-

flection

Configuration of deformation

1 4.47 60 -0.010 -0.013

2 2.12 28.95 -0.055 -0.054

3 1.40 19.2 -0.122 -0.117

5 0.83 11.5 -0.278 -0.268

∗
See Figure 1.
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Table 3: Comparison studies for a square isotropic shallow cylindrical shell with the laterally

unrestrained BC subjected to a UDL using one term in the series solutions

Radius of

curvature

to span

ratio

Rise to

thickness

ratio

Angle

subtended∗

Dimensionless

central de-

flection -

Proposed

approach†

ABAQUS simulation

Dimensionless

central de-

flection

Configuration of deformation

1 4.47 60 -0.053 -0.125

2 2.12 28.95 -0.172 -0.319

3 1.40 19.2 -0.297 -0.408

5 0.83 11.5 -0.427 -0.440

∗
See Figure 1.

†
For this BC, the present formulation is only accurate for extremely shallow shells (e.g. Rx/a = 5).
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(a) Proposed approach - Top surface (b) FE analysis - Top surface

(c) Proposed approach - Bottom surface (d) FE analysis - Bottom surface

Figure 3: Quiver plots of principal stresses on the top and bottom surfaces of a square isotropic

shallow cylindrical shell with the laterally restrained BC subjected to a UDL. Blue arrows

represent compressive stresses and the red ones represent tensile stresses. Five series terms

are used in the proposed formulation to produce the stress trajectories.

with respect to the unrestrained boundaries is related to the structure moving

from larger to smaller curvature. The model seems to work significantly better

for smaller curvatures than for larger curvatures.

For extremely shallow shells (Rx/a = 5) in Tables 2 and 3, quiver plots of
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(a) Proposed approach - Top surface (b) FE analysis - Top surface

(c) Proposed approach - Bottom surface (d) FE analysis - Bottom surface

Figure 4: Quiver plots of principal stresses on the top and bottom surfaces of a square isotropic

shallow cylindrical shell with the laterally unrestrained BC subjected to a UDL. Blue arrows

represent compressive stresses and the red ones represent tensile stresses. Five series terms

are used in the proposed formulation to produce the stress trajectories.

all principal stresses on the top and bottom surfaces of the shell are illustrated

in Figures 3 and 4 using GiD postprocessing framework. These figures are ob-

tained using the proposed approach and ABAQUS for square shallow cylindrical

shells with the laterally restrained and unrestrained BCs. The lengths of the
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vectors are proportional to their magnitudes. Both Figures 3 and 4 show that

the top surface of the shell under both BCs is predominantly under compression

while predominantly tension occurs at the bottom surface of the shell, which

suggests a behaviour not unlike plate bending. However, closer inspection shows

that the stress trajectories and distribution patterns are quite different for the

two BCs. The case of the unrestrained BC shows that the tensile stresses at

the bottom surface are concentrated towards the centre with a large area of

compression surrounding them, similar to a compressive ring surrounding lat-

erally unrestrained plates under large deflections [40]. It can also be seen from

the figures that the general stress patterns predicted by the proposed approach

match quite well with those predicted by the ABAQUS.

5.2. FG shallow shells

In this section, an FG shallow shell under large displacements is analysed.

Good thermal resistance of FG materials at high temperatures has been widely

accepted in the scientific community. A typical FG material is compositionally

graded from a refractory ceramic to metal. Accordingly, the material properties

of an FG shell vary continuously throughout the depth of the shell according

to the volume fraction of constituents given by either a power-law distribution

[44, 45] or an exponential distribution [46]. The former distribution has been

commonly used for modelling FG shells. For an orthotropic FG shell, the stiff-

ness coefficients are given by

Q =


E1(z)

1−ν12ν21
E2(z)ν12
1−ν12ν21 0

E2(z)
1−ν12ν21 0

symm. E2(z)
2(1+ν12)

 (35)

where E1 and E2 are elastic modulii referring to the axes x and y and are

defined as  E1(z)

E2(z)

 =

 E1t − E1b

E2t − E2b


(

1

2
+
z

h

)λ
+

 E1b

E2b

 (36)
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where λ(≥ 0) is the volume fraction index and subscripts Eit and Eib represent

the material properties of the top and bottom surfaces of layer i in the shell,

respectively.

Figure 5a shows the results of dimensionless maximum deflection of a square

orthotropic FG shallow spherical shell with the laterally unrestrained BC sub-

jected to a UDL which are compared with the results obtained from a meshless

local Petrov-Galerkin (MLPG) formulation [47]. The shell has thickness of

0.0127 m, span of 0.254 m, and radius of curvature to span ratio of 10. It is

subjected to a UDL of 2.07 × 106 N/m2 directed upwards (i.e. bottom surface

loading). A quadratic variation of the elastic moduli is considered (λ = 2) with

the elastic modulus on the bottom surface being E1b = 0.6895 × 1010N/m2

and E2b = E1b/2 and the elastic modulus on the top surface being E2t =

0.6895 × 1010N/m2 and E1t = 2E2t. For this example, the deflection is pre-

sented in a different dimensionless form, namely deflection of shallow shell over

deflection of its corresponding flat shell (Rx = Ry =∞). Figure 5a shows that

an acceptable level of accuracy can be achieved for extremely shallow spherical

shells with the laterally unrestrained BC using the proposed approach. This is

justified by the convergence of the solution in Figure 5b which shows that the

FE prediction is closer to the theoretical prediction obtained using three series

terms in the calculations. It is also found that the maximum deflection value

at the centre of an orthotropic FG shallow shell is about 1.13 times greater

than the maximum deflection of its corresponding flat shell because of the low

magnitude of elastic modulus chosen at the bottom surface of the shell.

Quiver plots of all dimensionless principal membrane tractions (forces) for

the same orthotropic FG shallow shell with both the laterally restrained and

unrestrained BCs are illustrated in Figure 6. As expected, a completely sym-

metric distribution is formed for both the BCs. Since an upwardly directed UDL

is applied, the behaviour of the shell with the laterally restrained BC is com-

pletely dominated by tensile membrane forces. However, in the case of laterally

unrestrained BC, compressive membrane stresses occur around the shell corners

while tensile membrane forces are formed in the central zone of the shell.
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Figure 5: Comparison of deflection for an orthotropic FG shallow spherical shell with the

laterally unrestrained BC subjected to a UDL. Figure (a) shows the variation of dimensionless

deflection (i.e. deflection of the shallow shell over deflection of its corresponding flat shell)

with the dimensionless x-coordinate parameter and Figure (b) demonstrates the convergence

of the dimensionless central deflection.
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(a) Laterally restrained BC (b) Laterally unrestrained BC

Figure 6: Distribution of all the dimensionless principal membrane tractions in a square or-

thotropic FG shallow cylindrical shells subjected to a UDL. Blue arrows represent compressive

forces and the red ones represent tensile forces.

5.3. Temperature-dependent shallow shells

In order to investigate the structural response of shallow shells under fire

conditions, a temperature-dependent concrete shallow hyperbolic paraboloidal

shell (as the most general case) which is exposed to through-depth thermal

gradients resulting from fire conditions has been analysed. Assuming a heat

source at the bottom surface of a shell of thickness 0.15 m, two extreme cases

of high and low rates of heating are considered [40]:

i. A “short hot” exponential fire representing a high heating rate (η = 0.005)

with a maximum temperature of 1000◦C when the bottom surface of the

shell has been heated for 1,200 s.

ii. A “Long cool” exponential fire representing a low heating rate (η = 0.001)

with a maximum temperature of 650◦C when the bottom surface of the

shell has been heated for 21,600 s.

An FE heat transfer analysis [48, 49] is carried out to determine the temperature

history of the imposed heating regimes. As illustrated in Figure 7, they may
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Figure 7: Time-temperature curves for the two fire scenarios.

vary slowly with time or may be sustained over long periods of time. The

corresponding through-depth temperature distributions for different times are

shown in Figure 8. In this analysis, the curve obtained for 1111 s is chosen to

represent the short hot fire condition and the curve obtained for 3637 s is chosen

to represent the long cool fire condition. Using curve fitting (see Figure 9), the

following expressions are obtained for the short hot fire

θ(z) = 20.01 + 585.30 exp

[
−9

(
z

h
+

1

2

)]
(37)

and for the long cool fire

θ(z) = 23.39 + 271.53 exp

[
−4.5

(
z

h
+

1

2

)]
(38)

The above non-uniform temperature fields can readily be used to study the

structural performance of shallow shells under two extreme fire scenarios with
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Figure 8: Through the thickness temperature distributions for the two fire scenarios.
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Figure 9: Non-uniform through the thickness temperature distributions for the shell. The

assumed curve fitting functions correspond to the high and low rates of heating.

different rates of heating and likely to produce different mechanical responses.

For a temperature-dependent concrete shell, the stiffness coefficients are given

by

Q =


E(θ,z)
1−ν2

E(θ,z)ν
1−ν2 0

E(θ,z)
1−ν2 0

symm. E(θ,z)
2(1+ν)

 (39)

The following expression which lies between the prediction of both the Eurocode

[50] and Australian Standard [51] is assumed for the elastic modulus of concrete

[40]

E(θ, z) = E0 exp

[
−
(
θ − 52.06

532

)2
]

(40)

where E0 is the elastic modulus of the concrete at ambient temperature (27×109

N/m2) and Eθ is its counterpart at elevated temperatures. For the coefficient

29

U
N
C
O
R
R
EC

T
ED

PR
O
O
F



−100 −80 −60 −40 −20 0
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Dimensionless UDL

D
im

e
n
s
io

n
le

s
s
 c

e
n
tr

a
l 
d
e
fl
e
c
ti
o
n

 

 

Short hot − With TDMP

Short hot − Ignoring TDMP

Long cool − With TDMP

Long cool − Ignoring TDMP

Figure 10: Dimensionless central deflection of square shallow hyperbolic paraboloidal shells

(h/a = 0.03 and Rx/a = −Ry/a = −5) with the laterally restrained BC subjected to a UDL

and the short hot and long cool fire scenarios.

of thermal expansion of the concrete, the following expression is taken [40]

α(θ, z) =

 9× 10−6 + 6.9× 10−11θ2, 20◦C ≤ θ ≤ 700 ◦C

0, 700 ◦C < θ ≤ 1200 ◦C
(41)

where α0 is the coefficient of thermal expansion of the concrete at ambient

temperature (9 × 10−6) and αθ is its corresponding modulus at elevated tem-

peratures. For structural steel, the relevant temperature-dependent material

properties (TDMP) can be found in [40].

The load-deflection relationship for a shallow hyperbolic paraboloidal shell is

shown in Figures 10 and 11 for both the chosen BCs. It can be seen that under

a downwardly directed UDL, larger deflections are produced in the case of short

hot fire. Moreover, the effect of TDMP on the nonlinear response of the shell is

more considerable for the short hot fire condition compared with the long cool

fire condition. Adding lateral restraint at the shell edges has clearly resulted

in lower values for the shell maximum deflection as compared with those values
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Figure 11: Dimensionless central deflection of square shallow hyperbolic paraboloidal shells

(h/a = 0.03 and Rx/a = −Ry/a = −5) with the laterally unrestrained BC subjected to a

UDL and the short hot and long cool fire scenarios.

obtained for the laterally unrestrained shells.

Quiver plots of all dimensionless principal membrane tractions (forces) of

the same shallow hyperbolic paraboloidal shell under the short hot fire exposure

condition are illustrated in Figure 12 for both the chosen BCs. Figure 12a shows

the compressive forces dominating the shell as a result of lateral restraint along

the shell boundaries, producing maximum tensile forces around the shell corners.

By moving away from the corners, the forces become more uniform. However,

as Figure 12b depicts, in the case of laterally unrestrained BC, compressive

forces develop along the two shell edges with positive curvature, whereas at

the centre of the shell only tensile forces are formed. The highest value of

compressive forces occurs in the shell corners, and the overall pattern suggests a

clear development of a compressive ring, supporting the tension in the middle.
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(a) Laterally restrained BC (b) Laterally unrestrained BC

Figure 12: Distribution of the all dimensionless principal membrane tractions in a square

temperature-dependent concrete shallow hyperbolic paraboloidal shell under a UDL and the

short hot fire exposure condition. Blue arrows represent compressive forces and the red ones

represent tensile forces.

6. Conclusions

A geometrically and materially nonlinear analysis of temperature-dependent

shallow shells subjected to thermo-mechanical loadings was presented. In all

cases considered, transverse deflections and rotations along the shell boundaries

were assumed to be restrained and free, respectively, while translations across

the boundaries could be free or restrained. Based on the analysis presented

herein, the following conclusions can be drawn:

• The formulation exhibits very good performance and convergence rate for

shallow shells with the laterally restrained BC. For this BC, three series

terms were used to achieve an accurate final solution. However, in the

case of laterally unrestrained BC, the good performance of the proposed

formulation was limited to the case of extremely shallow shells. It is hoped

that with further investigation, an accurate method for such shells can be

developed.
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• The solutions presented for the laterally restrained BCs, can especially be

used for benchmarking FE codes developed for thermo-mechanical sim-

ulations of shell elements. Such use is also reasonable for the solutions

presented for extremely shallow shells with laterally unrestrained BCs.

• The effect of TDMP on the nonlinear response of the shell is more pro-

nounced when short hot fire exposure condition is imposed. This effect is,

however, negligible for the long cool fire exposure conditions.

• The formulation developed is versatile and appropriate for other applica-

tions, such as laminated composite or orthotropic FG shallow shells. It

can be used for the nonlinear analysis of extremely shallow shells when

subjected to non-uniform through-depth thermal gradients, while also con-

sidering nonlinear and temperature-dependent material behaviour.

• The stress trajectories and principal stress distribution patterns obtained

from the proposed approach were found to be very similar to the ones ob-

tained from the FE analysis. These patterns can be explored and exploited

to visualise internal structures in composite flat and curved shells in or-

der to develop much deeper insights into the load-carrying mechanisms of

shells.
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