50 research outputs found

    Sensible Heat Transfer during Droplet Cooling:Experimental and Numerical Analysis

    Get PDF
    This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF) model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet

    Experimental and Numerical Study on Sensible Heat Transfer at Droplet/Wall Interactions

    Get PDF
    [EN] The present study addresses a detailed experimental and numerical investigation on the impact of water droplets on smooth heated surfaces. High-speed infrared thermography is combined with high-speed imaging to couple the heat transfer and fluid dynamic processes occurring at droplet impact. Droplet spreading (e.g. spreading ratio) and detailed surface temperature fields are then evaluated in time and compared with the numerically predicted results. The numerical reproduction of the phenomena was conducted using an enhanced version of a VOFbased solver of OpenFOAM previously developed, which was further modified to account for conjugate heat transfer between the solid and fluid domains, focusing only on the sensible heat removed during droplet spreading. An excellent agreement is observed between the temporal evolution of the experimentally measured and the numerically predicted spreading factors (differences between the experimental and numerical values were always lower than 3.4%). The numerical and experimental dimensionless surface temperature profiles along the droplet radius were also in good agreement, depicting a maximum difference of 0.19. Deeper analysis coupling fluid dynamics and heat transfer processes was also performed, evidencing a strong correlation between maximum and minimum temperature values and heat transfer coefficients with the vorticity fields in the lamella, which lead to particular mixing processes in the boundary layer region. The correlation between the resulted temperature fields and the droplet dynamics was obtained by assuming a relation between the vorticity and the local heat transfer coefficient, in the first fluid cell i.e. near the liquid-solid interface. The two measured fields revealed that local maxima and minima in the vorticity corresponded to spatially shifted local minima and maxima in the heat transfer coefficient, at all stages of the droplet spreading. This was particularly clear in the rim region, which therefore should be considered in future droplet spreading models.The authors are grateful to Fundação para a Ciência e Tecnologia (FCT) for partially financing the research under the framework of the project RECI/EMS-SIS/0147/2012 and for supporting P. Pontes with a research fellowship. A. S. Moita acknowledges FCT for financing her contract through the IF 2015recruitment program (IF 00810-2015) and E. acknowledges FCT for supporting his PhD fellowship (SFRH/BD/88102/2012).Teodori, E.; Pontes, P.; Moita, A.; Moreira, A.; Georgoulas, A.; Marengo, M. (2017). Experimental and numerical study on sensible heat transfer at droplet/wall interactions. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 304-311. https://doi.org/10.4995/ILASS2017.2017.5024OCS30431

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Alterações nas reservas de sementes de Dalbergia nigra ((Vell.) Fr. All. ex Benth.) durante a hidratação

    Get PDF
    Seed imbibitions is the first stage of the germination process and is characterized by the hydration of tissues and cells and the activation and/or induction of the enzymes responsible for mobilizing reserves for respiration and the construction of new cell structures. The objective of this study was to investigate the alterations in reserve substances during slow hydration of Bahia Rosewood (Dalbergia nigra) seeds in water. Seeds from two different lots (Lot I and II) were placed in saturated desiccators (95-99% RH) to hydrate at 15 and 25 °C until water contents of 10, 15, 20 and 25% were reached. At each level of hydration, changes in lipid reserves, soluble carbohydrates, starch and soluble proteins were evaluated. The mobilization of reserves was similarly assessed in both lots, with no differences being observed between the two hydration temperatures. Lipid contents showed little variation during hydration, while the contents of soluble carbohydrates and starch decreased after the 15% water content level. Soluble proteins showed a gradual tendency to decrease between the control (dry seeds) up to 25% water content
    corecore