47 research outputs found
Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice
When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with beta1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable
Physical Origin, Evolution and Observational Signature of Diffused Antiworld
The existence of macroscopic regions with antibaryon excess in the baryon
asymmetric Universe with general baryon excess is the possible consequence of
practically all models of baryosynthesis. Diffusion of matter and antimatter to
the border of antimatter domains defines the minimal scale of the antimatter
domains surviving to the present time. A model of diffused antiworld is
considered, in which the density within the surviving antimatter domains is too
low to form gravitationally bound objects. The possibility to test this model
by measurements of cosmic gamma ray fluxes is discussed. The expected gamma ray
flux is found to be acceptable for modern cosmic gamma ray detectors and for
those planned for the near future.Comment: 9 page
On modulational instability and energy localization in anharmonic lattices at finite energy density
The localization of vibrational energy, induced by the modulational
instability of the Brillouin-zone-boundary mode in a chain of classical
anharmonic oscillators with finite initial energy density, is studied within a
continuum theory. We describe the initial localization stage as a gas of
envelope solitons and explain their merging, eventually leading to a single
localized object containing a macroscopic fraction of the total energy of the
lattice. The initial-energy-density dependences of all characteristic time
scales of the soliton formation and merging are described analytically. Spatial
power spectra are computed and used for the quantitative explanation of the
numerical results.Comment: 12 pages, 7 figure
On the variation of the gauge couplings during inflation
It is shown that the evolution of the (Abelian) gauge coupling during an
inflationary phase of de Sitter type drives the growth of the two-point
function of the magnetic inhomogeneities. After examining the constraints on
the variation of the gauge coupling arising in a standard model of inflationary
and post-inflationary evolution, magnetohydrodynamical equations are
generalized to the case of time evolving gauge coupling. It is argued that
large scale magnetic fields can be copiously generated. Other possible
implications of the model are outlined.Comment: 5 pages in RevTex style, one figur
The thermal and kinematic Sunyaev-Zel'dovich effects revisited
This paper shows that a simple convolution integral expression based on the
mean value of the isotropic frequency distribution corresponding to photon
scattering off electrons leads to useful analytical expressions describing the
thermal Sunyaev-Zel'dovich effect. The approach, to first order in the Compton
parameter is able to reproduce the Kompaneets equation describing the effect.
Second order effects in the parameter induce a slight
increase in the crossover frequency.Comment: 7 pages, 2 figure
Possible Origin of Antimatter Regions in the Baryon Dominated Universe
We discuss the evolution of U(1) symmetric scalar field at the inflation
epoch with a pseudo Nambu-Goldstone tilt revealing after the end of exponential
expansion of the Universe. The U(1) symmetry is supposed to be associated with
baryon charge. It is shown that quantum fluctuations lead in natural way to
baryon dominated Universe with antibaryon excess regions. The range of
parameters is calculated at which the fraction of Universe occupied by
antimatter and the size of antimatter regions satisfy the observational
constraints, survive to the modern time and lead to effects, accessible to
experimental search for antimatter.Comment: 10 pages, 1 figur
Search for EC and ECEC processes in Sn and decay of Sn to the excited states of Te
Limits on EC and ECEC processes in Sn and on
decay of Sn to the excited states of Te have
been obtained using a 380 cm HPGe detector and an external source
consisting of natural tin. A limit with 90% C.L. on the Sn half-life of
y for the ECEC(0) transition to the excited
state in Cd (1871.0 keV) has been established. This transition is
discussed in the context of a possible enhancement of the decay rate by several
orders of magnitude given that the ECEC process is nearly degenerate
with an excited state in the daughter nuclide. Prospects for investigating such
a process in future experiments are discussed. The decay
limits for Sn to the excited states of Te were obtained on the
level of y at the 90% C.L.Comment: 17 pages, 5 figure
Moments of Nucleon Light Cone Quark Distributions Calculated in Full Lattice QCD
Moments of the quark density, helicity, and transversity distributions are
calculated in unquenched lattice QCD. Calculations of proton matrix elements of
operators corresponding to these moments through the operator product expansion
have been performed on lattices for Wilson fermions at using configurations from the SESAM collaboration and at
using configurations from SCRI. One-loop perturbative renormalization
corrections are included. At quark masses accessible in present calculations,
there is no statistically significant difference between quenched and full QCD
results, indicating that the contributions of quark-antiquark excitations from
the Dirac Sea are small. Close agreement between calculations with cooled
configurations containing essentially only instantons and the full gluon
configurations indicates that quark zero modes associated with instantons play
a dominant role. Naive linear extrapolation of the full QCD calculation to the
physical pion mass yields results inconsistent with experiment. Extrapolation
to the chiral limit including the physics of the pion cloud can resolve this
discrepancy and the requirements for a definitive chiral extrapolation are
described.Comment: 53 Pages Revtex, 26 Figures, 9 Tables. Added additional reference and
updated referenced data in Table I
Supersymmetry without R-parity : Constraints from Leptonic Phenomenology
R-parity conservation is an {\it ad hoc} assumption in the most popular
version of the supersymmetric standard model. Most studies of models which do
allow for R-parity violation have been restricted to various limiting
scenarios. The single-VEV parametrization used in this paper provides a
workable framework to analyze phenomenology of the most general theory of SUSY
without R-parity. We perform a comprehensive study of leptonic phenomenology at
tree-level. Experimental constraints on various processes are studied
individually and then combined to yield regions of admissible parameter space.
In particular, we show that large R-parity violating bilinear couplings are not
ruled out, especially for large .Comment: 56 pages Revtex with figures incorporated; typos (including
transcription typo in Table II) and minor corrections; proof-read version, to
appear in Phys. Rev.
Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term
In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW)
cosmological models by considering three different forms of variable :
, and
. It is found that, the connecting free parameters of the
models with cosmic matter and vacuum energy density parameters are equivalent,
in the context of higher dimensional space time. The expression for the look
back time, luminosity distance and angular diameter distance are also derived.
This work has thus generalized to higher dimensions the well-known results in
four dimensional space time. It is found that there may be significant
difference in principle at least, from the analogous situation in four
dimensional space time.Comment: 16 pages, no figur