61 research outputs found

    Correlations in the impenetrable electron gas

    Full text link
    We consider non-relativistic electrons in one dimension with infinitely strong repulsive delta function interaction. We calculate the long-time, large-distance asymptotics of field-field correlators in the gas phase. The gas phase at low temperatures is characterized by the ideal gas law. We calculate the exponential decay, the power law corrections and the constant factor of the asymptotics. Our results are valid at any temperature. They simplify at low temperatures, where they are easily recognized as products of free fermionic correlation functions with corrections arising due to the interaction.Comment: 17 pages, Late

    Entanglement entropy in quantum spin chains with finite range interaction

    Full text link
    We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L tends to infinity of the determinant of a block-Toeplitz matrix whose symbol belongs to a general class of 2 x 2 matrix functions. The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve of genus g >= 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for thes systems are characterized by the branch points of the hyperelliptic curve approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin (2004) for the XX model and Its, Jin and Korepin (2005,2006) for the XY model.Comment: 75 pages, 10 figures. Revised version with minor correction

    Riemann-Hilbert problem for Hurwitz Frobenius manifolds: regular singularities

    Full text link
    In this paper we study the Fuchsian Riemann-Hilbert (inverse monodromy) problem corresponding to Frobenius structures on Hurwitz spaces. We find a solution to this Riemann-Hilbert problem in terms of integrals of certain meromorphic differentials over a basis of an appropriate relative homology space, study the corresponding monodromy group and compute the monodromy matrices explicitly for various special cases.Comment: final versio

    On the calculation of finite-gap solutions of the KdV equation

    Full text link
    A simple and general approach for calculating the elliptic finite-gap solutions of the Korteweg-de Vries (KdV) equation is proposed. Our approach is based on the use of the finite-gap equations and the general representation of these solutions in the form of rational functions of the elliptic Weierstrass function. The calculation of initial elliptic finite-gap solutions is reduced to the solution of the finite-band equations with respect to the parameters of the representation. The time evolution of these solutions is described via the dynamic equations of their poles, integrated with the help of the finite-gap equations. The proposed approach is applied by calculating the elliptic 1-, 2- and 3-gap solutions of the KdV equations

    Lam\'e polynomials, hyperelliptic reductions and Lam\'e band structure

    Full text link
    The band structure of the Lam\'e equation, viewed as a one-dimensional Schr\"odinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lam\'e equation parameters take complex values, are investigated. If the Lam\'e equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.Comment: 38 pages, 1 figure; final revision

    Dual Isomonodromic Deformations and Moment Maps to Loop Algebras

    Get PDF
    The Hamiltonian structure of the monodromy preserving deformation equations of Jimbo {\it et al } is explained in terms of parameter dependent pairs of moment maps from a symplectic vector space to the dual spaces of two different loop algebras. The nonautonomous Hamiltonian systems generating the deformations are obtained by pulling back spectral invariants on Poisson subspaces consisting of elements that are rational in the loop parameter and identifying the deformation parameters with those determining the moment maps. This construction is shown to lead to ``dual'' pairs of matrix differential operators whose monodromy is preserved under the same family of deformations. As illustrative examples, involving discrete and continuous reductions, a higher rank generalization of the Hamiltonian equations governing the correlation functions for an impenetrable Bose gas is obtained, as well as dual pairs of isomonodromy representations for the equations of the Painleve transcendents PVP_{V} and PVIP_{VI}.Comment: preprint CRM-1844 (1993), 28 pgs. (Corrected date and abstract.

    Proofs of Two Conjectures Related to the Thermodynamic Bethe Ansatz

    Full text link
    We prove that the solution to a pair of nonlinear integral equations arising in the thermodynamic Bethe Ansatz can be expressed in terms of the resolvent kernel of the linear integral operator with kernel exp(-u(theta)-u(theta'))/cosh[(1/2)(theta-theta')]Comment: 16 pages, LaTeX file, no figures. Revision has minor change

    Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schr\"{o}dinger operators

    Get PDF
    In this paper, we consider one dimensional adiabatic quasi-periodic Schr\"{o}dinger operators in the regime of strong resonant tunneling. We show the emergence of a level repulsion phenomenon which is seen to be very naturally related to the local spectral type of the operator: the more singular the spectrum, the weaker the repulsion

    Fredholm determinants and pole-free solutions to the noncommutative Painleve' II equation

    Get PDF
    We extend the formalism of integrable operators a' la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi-infinite interval and to matrix integral operators with a kernel of the form E_1^T(x) E_2(y)/(x+y) thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painleve' II (recently introduced by Retakh and Rubtsov), a related noncommutative equation of Painleve' type. We construct a particular family of solutions of the noncommutative Painleve' II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painleve' II. Such a solution plays the same role as its commutative counterpart relative to the Tracy-Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.Comment: 46 pages, no figures (oddly
    corecore