The band structure of the Lam\'e equation, viewed as a one-dimensional
Schr\"odinger equation with a periodic potential, is studied. At integer values
of the degree parameter l, the dispersion relation is reduced to the l=1
dispersion relation, and a previously published l=2 dispersion relation is
shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses
Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is
based on a projection from a genus-l hyperelliptic curve, which parametrizes
solutions, to an elliptic curve. A general formula for this covering is
derived, and is used to reduce certain hyperelliptic integrals to elliptic
ones. Degeneracies between band edges, which can occur if the Lam\'e equation
parameters take complex values, are investigated. If the Lam\'e equation is
viewed as a differential equation on an elliptic curve, a formula is
conjectured for the number of points in elliptic moduli space (elliptic curve
parameter space) at which degeneracies occur. Tables of spectral polynomials
and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the
older literature is corrected.Comment: 38 pages, 1 figure; final revision