424 research outputs found

    Spinning deformations of the D1-D5 system and a geometric resolution of Closed Timelike Curves

    Full text link
    The SO(4) isometry of the extreme Reissner-Nordstrom black hole of N=1, D=5 supergravity can be partly broken, without breaking any supersymmetry, in two different ways. The ``right'' solution is a rotating black hole (BMPV); the ``left'' is interpreted as a black hole in a Godel universe. In ten dimensions, both spacetimes are described by deformations of the D1-D5-pp-wave system with the property that the non-trivial Closed Timelike Curves of the five dimensional manifold are absent in the universal covering space of the ten dimensional manifold. In the decoupling limit, the BMPV deformation is normalizable. It corresponds to the vev of an IR relevant operator of dimension \Delta=1. The Godel deformation is sub-leading in \alpha' unless we take an infinite vorticity limit; in such case it is a non-normalizable perturbation. It corresponds to the insertion of a vector operator of dimension \Delta=5. Thus we conclude that from the dual (1+1)-CFT viewpoint the SO(4) R-symmetry is broken `spontaneously' in the BMPV case and explicitly in the Godel case.Comment: 20 pages, no figures, LaTeX; v2: Minor improvements, to appear in Nucl. Phys.

    Lesbian and bisexual women's experiences of sexuality-based discrimination and their appearance concerns

    Get PDF
    Lesbian and bisexual women frequently experience sexuality-based discrimination, which is often based on others' judgements about their appearance. This short article aims to explore whether there is a relationship between lesbian and bisexual women's experiences of sexuality-based discrimination and their satisfaction with the way that they look. Findings from an online survey suggest that discrimination is negatively related to appearance satisfaction for lesbian women, but not for bisexual women. It is argued that this difference exists because lesbian appearance norms are more recognisable and distinctive than bisexual women's appearance norms

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review

    Vacuum Stability in Heterotic M-Theory

    Full text link
    The problem of the stabilization of moduli is discussed within the context of compactified strongly coupled heterotic string theory. It is shown that all geometric, vector bundle and five-brane moduli are completely fixed, within a phenomenologically acceptable range, by non-perturbative physics. This result requires, in addition to the full space of moduli, non-vanishing Neveu-Schwarz flux, gaugino condensation with threshold corrections and the explicit form of the Pfaffians in string instanton superpotentials. The stable vacuum presented here has a negative cosmological constant. The possibility of ``lifting'' this to a metastable vacuum with positive cosmological constant is briefly discussed.Comment: 39 pages, minor correction

    Antikaon condensation and the metastability of protoneutron stars

    Get PDF
    We investigate the condensation of Kˉ0\bar K^0 meson along with KK^- condensation in the neutrino trapped matter with and without hyperons. Calculations are performed in the relativistic mean field models in which both the baryon-baryon and (anti)kaon-baryon interactions are mediated by meson exchange. In the neutrino trapped matter relevant to protoneutron stars, the critical density of KK^- condensation is shifted considerably to higher density whereas that of Kˉ0\bar K^0 condensation is shifted slightly to higher density with respect to that of the neutrino free case. The onset of KK^- condensation always occurs earlier than that of Kˉ0\bar K^0 condensation. A significant region of maximum mass protoneutron stars is found to contain Kˉ0\bar K^0 condensate for larger values of the antikaon potential. With the appearance of Kˉ0\bar K^0 condensation, there is a region of symmetric nuclear matter in the inner core of a protoneutron star. It is found that the maximum mass of a protoneutron star containing KK^- and Kˉ0\bar K^0 condensate is greater than that of the corresponding neutron star. We revisit the implication of this scenario in the context of the metastability of protoneutron stars and their evolution to low mass black holes.Comment: 26 pages; Revtex; 8 figures include

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers

    Get PDF
    Item does not contain fulltextBACKGROUND: Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown. METHODS: We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models. RESULTS: Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m(2) increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction < 0.05). CONCLUSION: Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as
    corecore